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ABSTRACT 

Waveform design for Target identification and classification 
in MIMO radar systems has been studied in several recent 
works. While the previous works considered signal 
independent noise, here we extend the results to the case 
where signal-dependent noise, clutter, is also present and 
then we find the optimum waveform for several estimators 
differing in the assumptions on the given statistics. 
Computing the optimal waveforms for MMSE estimator 
leads to the Semi-definite programming (SDP) problem. 
Finding the optimal transmit signals for CSLS estimator 
results in a minimax eigenvalue problem. Finally it is shown 
that equal power waveforms are the best transmit signals for 
the SLS estimator.

Index Terms— Estimators, Optimization, Waveform

1. INTRODUCTION 

Waveform design in the presence of signal dependent 
noise, i.e., clutter, is one of the most intensively investigated 
problems in radar systems. Recently, Kay in [1] has shown 
that for optimal detection with Nyman Pearson criterion, 
transmit signals must whiten the clutter. Most of the existing 
literatures deal with the point target model. However, as the 
resolution of radars increases, a better model becomes that 
of an extended target which is spread in range, azimuth, and 
Doppler. 

Recently a great interest has emerged in MIMO radars 
employing multiple antennas at both the transmitter and 
receiver and performing space-time processing on both. An 
extended target model for MIMO radars has been developed 
in [2]. Since a MIMO radar system can transmit multiple 
probing signals via its antennas, better optimization through 
waveform selection is possible. For example, in [3], use of 
multiple signals with arbitrary cross-correlation matrix has 
been proposed and shown that the cross-correlation matrix 
can be chosen to achieve a desired spatial transmit 
beampattern. Waveform optimization problem for parameter 
estimation for the general case of multiple targets in the 
presence of spatially colored noise has been investigated in 
[4]. An information theoretic approach has been considered 
for waveform optimization problem by [5]. Also some 
works are  done on MIMO waveform design in the presence 
of clutter.  In [6] a procedure is developed to design the 
optimal waveform which maximizes the signal-to-
interference plus-noise ratio (SINR) at the output of the 

detector. It leads to a nonlinear optimization problem and 
the suggested adaptive algorithm is neither guaranteed to 
converge nor, if converged, to produce the global maximum. 

 In this work we consider the MIMO radar system and 
attempt to find the appropriate waveform for optimal 
parameter estimation and target identification in the 
presence of clutter and noise. This work is organized as 
follows. First the modelling assumption is presented in 
section 2, and then transmit waveforms are found such that 
the error of MMSE estimator in estimating the target 
impulse response is minimized. This problem leads to a 
semidefinite programming (SDP) problem which is 
discussed in section 3. Then the optimal signal design for 
covariance shaping least square estimator (CSLS), which 
requires less information than MMSE estimator, is 
investigated in section 4. Since it assumes the worst possible 
target conditions, it guarantees the fixed level of 
performance. So it will be robust in any realization of target. 
Finally section 5 relates to the numerical results and a 
comparison between the performances of different 
estimators.  

Notation: throughout this paper, we use bold upper case 
letters to denote matrices, and bold lower case letters to 
signify column vectors. Superscripts   and  will be 
used to denote the complex conjugate transpose and the 
pseudoinverse of the corresponding matrix respectively. We 
use for the trace of a matrix, and  for expectation 
with respect to all the random variables within the brackets. 
Given a matrix , the symbol  denotes the Frobenius 
norm of G and it is defined as . We let 
I denote the identity matrix. The notation means 
that  is Hermitian and nonnegative definite, and 

means that .Finally, given a Hermitian 

matrix , we denote by  the Hermitian square root and 
by ) and ) the largest and smallest 
eigenvalues, respectively. 

2. MODEL 

Consider MIMO radar equipped with  transmitter and 
receiver antennas. The  received signal can be 
expressed as [2] with the difference that we consider this 
model in discrete-time for simplicity 

,
where matrix   is the target 
scattering matrix similar to the channel matrix in [2], signal 
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vector is transmitted by 
transmitters at time n,  is the 
collection of the received signals at the various receiving 
elements at time n and is the additive white noise. In 
order to estimate , let finite length signal 

 be transmitted from each element. 
Due to the transmitted matrix       

, the received matrix Z can be 
expressed as: 

                                  ,  
where  is the noise matrix defined by 

. The reflection from a target is 
almost always accompanied by reflections from the 
surrounding environment (ground, ocean), referred to as 
clutter. By denoting the target related quantities by 
subscript, t and clutter by c, the complete signal model for 
received radar signal  is then given by: 

                          ,                        (1)        
where  and  are assumed to be Gaussian distributed 
matrices with zero mean and covariance  and 
respectively. These covariance matrices are defined by 

 and . Now our problem is to 
find the optimal transmit matrix such that target 
estimation error is minimized. 

3. OPTIMAL WAVEFORM DESIGN FOR MMSE 
ESTIMATOR 

The task of a target estimation algorithm is to recover the 
target scattering matrix . In this section we obtain a linear 
estimator that minimizes the estimation MSE of  and 
choosing  such that the MMSE estimation error is 
minimized. The linear MMSE estimator can be expressed 
as:

                                    
where  has to be obtained so that the MSE is minimized. 

                      
The estimation error can be expressed as: 

             

                        

                                   (2)    
 The optimal estimator  can be found from  and 

is given by: 

Hence the linear MMSE estimation of matrix  can be 
written as: 

The performance of this estimator is characterized by the 
error matrix with zero mean and 
covariance 

.
Therefore the MMSE estimation error can be computed 

as:

                     
(3) 

Our goal is to find those transmitted waveforms S that 
minimize estimation error  under the power constraint 

 . Therefore we can express the problem of 
waveform design as: 

s.t                        
Now by setting  
                                              (4)       

, using matrix inversion Lemma and some matrix 
manipulations, not shown due to the lack of space, 
can be rewritten as: 

           
(5)                      

For the reason that the first expression,                    
, is independent of , it’s enough to 

minimize the second expression. 

                         (6)                      
where 

.   (7) 
This optimization problem can be formulated as an SDP 
convex optimization problem. The following Lemma is 
useful for developing equations specifying optimal 
waveforms. 

Lemma1. (Schur’s complement): let  be an 

Hermitian matrix. Then with   ,  if and only if  
, [7]. 

Theorem 1: The optimal waveforms for MMSE estimator 
can be found as the solution to the SDP: 

Subject to  

                                      (8)            

                                                                      (9)  
Proof: employing auxiliary variable , (6) can be 

rewritten as: 

                                      (10)   

now by using Lemma 1, (10) is equivalent to the Linear 
Matrix Inequality (LMI) in (8). The mathematical 
optimization problems formulated in [5] and [8] can be seen 
to be the special cases of that treated in Theorem 1. 
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4. ROBUST WAVEFORM DESIGN 

Consider the case where we know the clutter statistics but 
not that of the target. The clutter matrix information can be 
obtained through field measurements in areas assumed to be 
target free. Since we have no knowledge of the second order 
statistics of the target matrix, in this section we characterize 

 as an unknown, deterministic matrix in the linear model 
                          .
A linear estimator  is chosen to minimize MSE of  

 subject to the constraint that the covariance of the 
error in the estimate   defined by  , is 
proportional to a given covariance matrix . Therefore we 
can control the dynamic range and spectral shape of the 
covariance of the estimation error. This is the CSLS 
estimator the theory of which can be found in [9]. This can 
be formulated as [9]: 

                        (11)     
                s.t.                                      (12) 

where  is a given covariance matrix, c >0 is a constant          
and,  is the covariance of the 
estimation error. Note that if (12) is replaced by constraint 

, we obtain the LS estimator that estimates =
 and cannot discriminate between  and . It happens 

due to the well known fact that unbiased estimators such as 
the LS estimator do not necessarily lead to the minimum 
MSE [9]. Without any knowledge about target statistics, we 
can only control the spectral shape of the estimation error. 
That is what the CSLS estimator exactly does. CSLS 
estimator is the biased estimator. Eldar and Oppenheim in 
[9] have shown that it improves the performance at low to 
moderate SNRs. Without loss of generality, we choose 

 in order to whiten the estimation error in (12). 
can be obtained by solving (11) subject to (12) as [9]:  

So the estimation error can be expressed as: 

                (13)       
 In designing optimal waveform, one possible approach 

is to minimize the MSE. However, as it is seen in (13) in the 
case of deterministic target matrices, the MSE depends 
explicitly on and therefore cannot be minimized.We 
therefore proposed seeking waveform that minimizes a 
worst-case function of the MSE over all possible values of 

 that satisfy a Frobenuis norm constraint of the form 
 for some constant U. This is a robust 

waveform design procedure and it can guarantee a fixed 
level of performance for any realization of the target 
channels. 

                                      (14)                       
                      s.t.             

where .The worst–case will happen       
when all rows of , are in the direction of eigenvector 
corresponding to largest eigenvalue of matrix . Therefore 
(14) can be rewritten as: 

                               )                               (15)     
By setting 

,
eigenvalues of  are:    

                                                (16)         
If all of the eigenvalues of  are larger than 1 then it can 

be seen from (16) that  is monotonically increasing in 
 and therefore ) will correspond to ),

but if D has some eigenvalues smaller than 1, ) may 
correspond to ). So (15) can be rewritten as the 
nonlinear optimization: 

.

(17)
This is a nonlinear optimization problem and in general 

we must resort to numerical optimization techniques to 
solve for the optimal transmit waveform S. As discussed 
earlier, CSLS estimator is used in low to moderate SNR. 
Hence due to the fact that 

            (18) 
eigenvalues of D are generally more than 1. Therefore we 
can relax the nonlinear optimization problem (17) by 
assuming that all the eigenvalues of  are larger than 1:   

                                                  (19)      

Therefore (17) becomes: 

                       

that is equivalent to . Furthermore 
can be expressed as the solution to the SDP 

problem: 
                                      (20)    
Therefore the optimal transmit signals for CSLS 

estimator can be found as the solution to the following SDP 
problem: 

Subject to 

                                           (21) 

 We used Lemma 1 to express as
an LMI in (21). 
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5. NUMERICAL RESULTS 

In this section, we present numerical examples in order to 
illustrate the waveform design solutions derived in this 
paper. Here we consider a simple MIMO radar case with 

 and . We assume the additive white Gaussian 
noise. In all the simulations we fix target power, , at
30 and select eigenvalues of such that

. The SINR at the input of the 
estimator is defined by . It can be seen that SINR 

is a function of both  and   .  
Fig. 1 illustrates the MSE of MMSE estimator under both 

the optimal and equal power allocation schemes ( )
versus SINR values for fixed  of 50. It shows that 
equal power waveforms are asymptotically optimum in the 
sense of minimizing the MSE. Fig 1 also compares MMSE 
and CSLS performances. As we expected CSLS is very 
conservative but it will guarantee the fix value of error in all 
cases.  

When there is no knowledge about target statistics, a 
class of estimators is employed which assume deterministic 
signal model and only needs the knowledge of noise 
statistics in order to obtain .  ML estimator is the most 
popular estimator of this class and by following similar 
procedure suggested in this paper, it is easy to see that the 
ML optimal waveforms are orthogonal equal power 
schemes ( . In Fig. 2 we plot the MSE in 
estimating  by using CSLS and ML estimators for 
different values of SINR for fixed   equal to 1. Since 
ML estimator cannot discriminate between  and , for 
high clutter power ML estimator leads to the large MSE 
values. Instead of ML estimator, in this work we proposed 
CSLS estimator that exhibits a much better performance 
than ML estimator in high clutter power.  

                     

Fig. 1  CSLS estimator compared by MMSE estimator under both optimal 
and equal-power waveforms.

Fig. 2  CSLS estimator compared by ML estimator, both under their 
optimal  transmitted signals  
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