
Frequency Invariant MVDR Beamforming without
filters and Implementation using MIMO radar

Piya Pal and P. P. Vaidyanathan
Dept. of Electrical Engineering, MC 136-93

California Institute of Technology, Pasadena, CA 91125, USA
E-mail: piyapal@caltech.edu, ppvnath@systems.caltech.edu

Abstract—Frequency invariant beamforming with sensor ar-
rays is generally achieved using filters in the form of tapped
delay-lines following each sensor. However it has been recently
shown that with the help of the rectangular smart antenna array,
it is possible to generate frequency invariant beampattern without
using filters. In this paper, this frequency invariant beamforming
technique is utilized to perform MVDR beamforming in the
beamspace by designing frequency invariant beams spanning the
desired range of azimuthal angles and optimally combining them.
However the performance of the frequency invariant beamformer
depends on the number of sensors which could be large for a
rectangular array of size M × N . Making use of the virtual
array concept used in MIMO radar, a novel method of producing
the same frequency invariant beam, using only M transmitting
and N receiving antennas, is proposed and a design example is
provided to demonstrate the idea. 1
Index Terms — Beamspace, Frequency Invariance, MIMO

Radar, MVDR, Virtual Array.

I. INTRODUCTION
In array processing of broadband signals, frequency invari-

ance is usually achieved with the help of tapped delay-lines at
the output of each sensor. Frequency invariant beamforming
has been studied extensively because of the advantages it offers
in terms of reduced complexity for adaptive beamforming [3],
[8], [9], broadband DOA estimation and so forth [3], [11].
Generally frequency invariant beamforming needs filters at the
sensor outputs to compensate for the frequency dependence of
the beampattern.
In [4], however, it has been shown that frequency invariant

beamforming can be achieved using just one weight per sensor
instead of tapped delay-lines, by extending the dimension of
the array from linear to rectangular. We review this idea briefly
in Section II. The contributions of our paper are twofold,
which are discussed in Sections III and IV. In Section III
of this paper, we use this idea to the case of beamspace
MVDR beamforming. Using a rectangular array of dimension
M × N , we generate a set of P fixed frequency invariant
beams, specified as functions of azimuthal angle, following the
method suggested in [4], and then combine them adaptively,
by taking a weighted sum of the beams. These weights can
be adapted in real time. Here they are designed so that the
resulting beam is optimum in the MVDR sense. It is to be
noted that P , the number of weights to be adapted, is much
less than the total number of sensors M × N and so it
offers reduced complexity in adapting these weights in real
time. Moreover, unlike [3], [8] and [9], the generation of the
frequency invariant beams is achieved without tapped delay-
line filters. In [5], adaptive beamforming is also performed
using the rectangular array without filters but it uses one
weight per sensor. So it requires the adaptation of MN
weights whereas our method can perform the adaptation using
far fewer number of weights. Also the resulting beampattern
in [5] is not guaranteed to be frequency invariant whereas
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in our design the final beampattern will always be frequency
invariant.
The performance of the frequency invariant beamformers

however depends on the size of the array and for a rectangular
array, it could mean the use of a large number of sensors.
A solution to this is proposed in Section IV by using the
virtual array concept prevalent in MIMO radar beamforming.
Thus, a novel idea of producing the same frequency invariant
beampattern as generated by a rectangular array, using only
M transmitting and N receiving antennas, is proposed where
the transmitted signals are wideband. The transmitting and
receiving arrays are both uniform linear arrays (ULA) and
they are along orthogonal directions. We perform the desired
beamforming at the receiver using only one weight per sensor
and produce the same beampattern, effectively using M + N
sensors instead of MN sensors. This is also different from
[6] where the beamforming for a wideband MIMO radar
is performed by dividing the wideband signal into narrow
frequency bins. We provide simulation examples to support
our proposed method in Section V.

II. REVIEW OF FREQUENCY INVARIANT BEAMFORMING
USING RECTANGULAR ARRAY

Consider a uniform rectangular array of size M × N .
Each omnidirectional antenna element’s position is denoted by
(md1, nd2), m = −M−1

2 , · · · , M−1
2 , n = −N−1

2 , · · · , N−1
2 ,

d1 and d2 being the spacing between elements along the
two dimensions respectively. We assume M and N to be
odd. Signal received at (m,n)th sensor is multiplied by Cm,n
and then all these signals are summed up to get the beam.
Assuming the wideband signal s(t) to be arriving from an
elevation angle φ and azimuthal angle θ, the signal received
at the (m,n)th antenna, after demodulation, and sampling with
sampling period of Ts, is given in the frequency domain as

Xm,n(ejω, θ)=e−j ω̂
cTs

(md1 sin φ cos θ+nd2 sin φ sin θ)S(ejω) (1)

where c is the propagation velocity and ω̂ = ω + 2πfcTs, fc
being the carrier frequency. Assuming that φ ≈ 90◦ [4], the
beam pattern is given by

H(ejω, θ) =

M−1
2∑

m=−M−1
2

N−1
2∑

n=−N−1
2

Cm,ne−j ω̂
cTs

(md1 cos θ+nd2 sin θ) (2)

Suppose we want to generate a desired frequency invariant
beampattern F (θ). Then we require

H(ejω, θ) = F (θ), ωl ≤ ω ≤ ωh (3)

where ωl and ωh are the lowest and highest frequencies
respectively contained in S(ejω). Denoting ω1 = ω̂ d1

cTs
cos θ,

ω2 = ω̂ d2
cTs

sin θ and G(ω1, ω2) = H(ejω, θ) in (2), we have
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G(ω1, ω2)=

M−1
2∑

m=−M−1
2

N−1
2∑

n=−N−1
2

Cm,ne−jmω1e−jnω2=F (tan−1(
ω2d1

ω1d2
))

for (cTs)2ω2
1

d2
1

+ (cTs)2ω2
2

d2
2

∈ [(ωl + 2πfcTs)2, (ωh + 2πfcTs)2]

Beyond this range of (cTs)2ω2
1

d2
1

+ (cTs)2ω2
2

d2
2

, G(ω1, ω2) can
theoretically take any value without affecting the desired
beampattern. We assume it to be a constant value beyond this
range. We choose d1 = d2 = λmin

2 to avoid spatial aliasing,
λmin being the smallest wavelength in s(t). We determine
Cm,n by

Cm,n =
1

KL

K−1∑
k=0

L−1∑
l=0

G(ω1k, ω2l)ejmω1kejnω2l , (4)

where ω1k = −π + 2πk
K , ω2l = −π + 2πl

L with K = 2M and
L = 2N [10].

III. BEAMSPACE MVDR BEAMFORMING USING
FREQUENCY INVARIANT BEAMS

In this section we extend the above idea to produce P
fixed (non adaptive) frequency invariant orthogonal beams
spanning the range of azimuthal angles of interest and then
linearly combine them, to produce an MVDR beam. Fig. 1
demonstrates this.
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Fig. 1. Block diagram of FIB and beamspace processor.

The sampled signals xm,n(k) m = −M−1
2 , · · · , M−1

2 , n =
−N−1

2 , · · · , N−1
2 , from all the MN antennas are fed into each

of the P Frequency Invariant Beamformers (FIB) which form
the desired P frequency invariant orthogonal beams spanning
the beamspace. The pth FIB uses the constant weights Cp

m,n,
m = −M−1

2 , · · · , M−1
2 , n = −N−1

2 , · · · , N−1
2 to form the

pth beam Bp(θ) as
M−1

2∑
m=−M−1

2

N−1
2∑

n=−N−1
2

Cp
m,ne−jmω1e−jnω2 = Bp(θ) (5)

for p = 1, 2, · · · , P. In this case, Bp(θ) is chosen to be

Bp(θ) =
1
P

sin(πP
2 (sin θ − 2p−P−1

P ))

sin(π
2 (sin θ − 2p−P−1

P ))

It is to be noted that these FIBs do not use any tapped delay-
line and each FIB generates one frequency invariant beam
using only one weight per sensor output. For each FIB, Cp

m,n
are determined by the method proposed in Section I. We
combine the outputs yp(k), of the P FIBs by multiplying
them with respective adaptive weights gp, p = 1, 2, · · · , P
and taking the sum to get the final output z(k). Consider I
broadband signals si(k) incident on the array at azimuthal
angles θi, i = 0, 1 · · · , I − 1 with s0(k) being the desired
signal. Using (5), the output of the pth FIB is,

yp(k) =
I−1∑
i=0

Bp(θi)si(k) + ηp(k) (6)

where ηp(k) is the noise at the output of pth FIB. Define
y=[y1(k) y2(k) · · · yP (k)]T and g=[g1 g2 · · · gP ]H . Then
the final output is given by

z(k) = gHy (7)

The SINR maximization can be obtained by minimizing the
total variance of z(k) under the constraint that the target
response, from look direction θ0 is unity. It can be expressed
as the following optimization problem

min
g

gHRg (8)

subject to gHb = 1

where R � E[yyH ] and b � [B1(θ0) B2(θ0) · · ·BP (θ0)]T .
This g is called minimum variance distortionless response
(MVDR) beamformer and the well known solution to the
above optimization problem is given by [2]

g =
R−1b

bHR−1b
(9)

This way we can find the optimum weights gp, p = 1, 2, · · · , P
which will maximize the SINR and will effectively suppress
upto P − 1 jammers arriving from directions other than θ0.
We illustrate this in Section V with simulation examples.
It is to be noted that the FIB processors produce fixed

beams and hence can be designed off-line. The actual number
of weights to be adapted is P which is far less than the
total number of sensors MN . This could be achieved be-
cause the frequency invariant beamforming and the adaptive
beamforming are separately performed in this case, so that
even when the signals are wideband, we end up adapting only
one constant weight per beam (as the beams are designed to
be frequency invariant). This is also fundamentally different
from [5] where one weight per sensor is adapted, resulting in a
total of MN weights to be adapted. This involves adaptation
of a large number of weights in real time compared to our
method, when P � MN . Also, the resulting beampattern in
[5] is not necessarily frequency invariant, whereas our method
will always produce a frequency invariant beam, as we shall
demonstrate in Section V.

IV. IMPLEMENTATION OF THE FIB USING MIMO RADAR
VIRTUAL ARRAY CONCEPT

Although the frequency invariant beamforming method de-
scribed in Section II uses no filter, the performance of the
FIB however depends on the size M × N of the rectangular
array which could mean the use of a large number MN of
sensors. So here we propose a modified method to produce
a given frequency invariant beampattern in wideband MIMO
radar applications, using only M + N sensors which will
produce the desired frequency invariant beam as is produced
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by a rectangular array of size M × N at the receiver. Fig. 2
shows a MIMO radar with M transmitting and N receiving
antennas with d as the inter-element spacing. The transmitting
and receiving arrays are linear, omnidirectional, colocated
and perpendicular to each other. The azimuthal angle, θ is
measured in their plane (XY plane) and the elevation angle
φ is measured with respect to the normal to XY plane. The

.� .��.��.��.��.��.��.��.��.��.��

X
d

Y

d

M��Transmitting�Antennas

N�Receiving�Antennas

Fig. 2. MIMO radar Transmitting and Receiving Arrays.

transmitted signal of the mth transmitting antenna is given by

sm(t) = s̃(t)ejΩmt (10)

where s̃(t) is a wideband signal occupying a frequency range
from fl to fh with a total bandwidth of B. The Ωm are chosen
such that

Ωm+1 − Ωm ≥ 2πB m = 0, 1, · · · ,M − 1. (11)

This ensures that the signals transmitted from the different
transmitted antennas are non overlapping in frequency. At each
receiving antenna, we have a bank of M linear phase bandpass
filters to separate out the M transmitted signals received at any
receiving antenna, retaining their phase information. The mth
bandpass filter has a bandwidth of 2πB centered at frequency
Ωm. Consider a far-field point target at elevation angle φ and
azimuthal angle θ. The aggregate waveform incident on the
target is

p(t) = α1

M−1∑
m=0

sm(t− d

c
m sin φ cos θ)

where α1 is the overall attenuation factor, assumed same for
all transmitters [6]. The signal received from the target at the
nth receiving array is given as xn(t) = α2p(t−nd

c sin φ sin θ)
for n = 0, 1, · · · , N−1, where α2 depends on the propagation
attenuation and target’s scatter coefficient [6]. Assuming the
bandpass filters are ideal zero phase filters, the target response
in the mth bandpass filter of the nth receiving antenna is

rn,m(t) = αsm(t− d

c
(m sin φ cos θ + n sin φ sin θ)), (12)

where α = α1α2. We assume, φ ≈ 90◦ [4]. The signal is then
down converted by Ωm to get the output yn,m(t), which, after
sampling at sampling intervals Ts, is, in the frequency domain

Yn,m(ejω, θ) = αe−j d
cTs

(ω+ωm)(m cos θ+n sin θ)S̃(ejω), (13)

where ωm = ΩmTs. The similarity of above expression
with (1) motivates us to use constant multipliers wn,m to
process the signals yn,m(k) as done in Section II. However,
the additional multiplying term e−jωm

d
cTs

(m cos θ+n sin θ) due
to the mth carrier (which however does not depend on the
frequency ω) makes the determination of the weights wn,m
different from that in Section II.
Suppose we wish to produce a desired (frequency invariant)

beampattern B(θ) by multiplying the signals yn,m(k) with
constant multipliers wn,m and then adding them up. Then
the processed output y(t) can be described in the frequency
domain as

Y (ejω, θ)=α

M−1∑
m=0

N−1∑
n=0

wn,me−j d
cTs

(ω+ωm)(m cos θ+n sin θ)S̃(ejω).

Denoting

G(ω, θ) =
M−1∑
m=0

N−1∑
n=0

wn,me−j d
cTs

(ω+ωm)(m cos θ+n sin θ), (14)

we can write Y (ejω, θ) = αG(ω, θ)S̃(ejω). We want

G(ω, θ) ≈ B(θ), ωl ≤ ω ≤ ωh (15)

where ωl = 2πflTs, ωh = 2πfhTs. This implies Y (ejω, θ) ≈
αB(θ)S̃(ejω). We can then pass the resulting signal through a
filter matched to S̃(ejω) and sample the output at time index
k = 0, to get the final beampattern as

y(θ) ≈ αB(θ)Rss(0). (16)

where Rss(l) is the autocorrelation of s̃(k) at lag l. The crucial
step is to realize (15) and we cannot apply the direct 2-D
IDFT technique of Section II here. So instead we estimate the
weights wn,m using the least-squares method as follows:
Sample G(ω, θ) at M1 frequency points ωi between ωl and

ωh, i = 0, 1, · · · ,M1−1 and corresponding to each ωi, sample
G(ωi, θ) and B(θ) at N1 values of θk, between −π

2 and π
2 ,

k = 0, 1, · · · , N1 − 1. We wish to find wn,m to achieve

min
wn,m

∑
ωi

∑
θk

|G(ωi, θk)−B(θk)|2. (17)

The Least Squares solution to the above problem is given by

w = (AHA)−1AHC, (18)

where the elements of the vectors w, C and the matrix A are
given by

wj = wn,m, Ci = B(θk2) (19)

Ai,j = e−j d
cTs

(ωk1+ωm)(m cos θk2+n sin θk2 ). (20)

Here the indices i and j are related to m, n, k1 and k2 as

i = k1N1 + k2, j = mN + n

with m = 0, 1, · · · ,M − 1, n = 0, 1, · · · , N − 1, k1 =
0, 1, · · · ,M1 − 1, k2 = 0, 1, · · · , N1 − 1. In case A is not
full rank, we replace (AHA)−1AH by the Moore-Penrose
pseudo inverse of A.

V. DESIGN EXAMPLES

We provide two examples, one for the frequency invariant
beamspace MVDR beamforming for the rectangular array
and the second one for the frequency invariant beampattern
synthesis using the MIMO radar virtual array.
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A. Beamspace frequency invariant MVDR Beamforming with-
out filters
Following the procedure described in Sections II and III,

we provide a design example here for a rectangular array
of size M = 17, N = 17. The number of beams spanning
the beamspace is P = 7. The spacings d1 and d2 are both
chosen to be λmin

2 where λmin is the lowest wavelength in
the frequency band under consideration. We intend to achieve
frequency invariance in the range 1000 Hz to 2000 Hz. We
consider two wideband jammers arriving at angles 30◦ and 45◦
with jammer to signal ratio 30 dB and signal to noise ratio
10 db. The resulting MVDR beampattern is plotted in Fig. 3,
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Fig. 3. MVDR Beampattern as a function of sine of azimuthal angle θ at
frequencies 1000Hz, 1500Hz, and 2000Hz.

as a function of sin θ for frequencies f = 1000 Hz, 1500 Hz
and 2000 Hz. It can be seen that the shape of the mainlobe
and nulls in the direction of jammers have been maintained
throughout the frequency band.

B. Frequency Invariant Beamforming using MIMO Radar
Virtual Array
In this example, we generate a given frequency invariant

beampattern, as produced by a rectangular receiving array
of size M × N , with only M = 25 transmitting antennas
and N = 25 receiving antennas as described in Section IV.
We assume fl = 500 Hz, fh = 1000 Hz, Ω0 = 750 Hz,
Ωm+1 = Ωm + 500 Hz, m = 0, 1, · · · , 23. We sample at 25
frequency points between 500 Hz and 1000 Hz and 80 values
of θ between −π

2 to π
2 to get a total of 2000 points which we

use to estimate the weights using least squares technique. The

desired beampattern is chosen to be B(θ) =
6∑

n=0

e−jnπ sin θ.

The synthesized pattern is plotted as a 3-D plot with respect
to frequency and azimuthal angle. The frequency invariance
of the plot is clear from Fig. 4.

VI. CONCLUDING REMARKS

In this paper, we performed beamspace MVDR beamform-
ing for wideband signals using a rectangular array without
any time domain filtering, by first designing a set of fixed
frequency invariant beams using one multiplier at each sensor
output and then combining them using a set of adaptable
weights. This results in far lesser complexity compared to
traditional wideband adaptive beamforming with satisfactory
performance as shown by the simulation examples. We also

Fig. 4. Frequency invariant beam designed using MIMO radar virtual array
concept.

developed a technique to design the fixed frequency invariant
beams using the MIMO virtual array concept using only M
transmitting and N receiving antennas instead of a rectangular
receiving array of size M × N . The simulation examples
satisfactorily show the effectiveness of the proposed technique.
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