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ABSTRACT

We study the parametric distributed estimation problem using a wire-
less sensor network (WSN) where each sensor observes an unknown
scalar parameter, quantizes its observation and sends its quantized
observation to a fusion center via fading and noisy communication
channels. We propose to incorporate channel statistics rather than
the instantaneous channel state information (CSI) into the maximum
likelihood (ML) formulation and show that the resulting likelihood
function is strictly log-concave almost surely with a change of vari-
able provided that at least one of the communication channels be-
tween the sensors and the fusion center has nonzero capacity. We
also investigate the effects of channel layer on the sensor threshold
design and show that the threshold design problem is coupled with
the channel layer and the sensor signal-to-noise ratio (SNR) only for
nonsymmetric channels. Our formulation is very general in the sense
that no assumptions are made about the physical layer in terms of the
modulation schemes and the reception techniques.

Index Terms— Distributed estimation, fading channels, maxi-
mum likelihood estimation.

1. INTRODUCTION

The problem of parametric distributed estimation in the context
of low-cost, low-power and bandlimited wireless sensor networks
(WSNs) has recently been studied in the literature [1, 2, 3, 4, 5, 6, 7].
In [1, 2] the authors assume that the analog sensor measurements
are transmitted from the sensors to the fusion center via fading and
noisy wireless channels. Although their formulation allows to use
linear estimators, the assumption of analog sensor measurements
is highly demanding for a resource constrained WSN. In [3, 4],
the authors use quantized data and assume that the communication
channels between the sensors and the fusion center are ideal. The
assumption of ideal communication channels may not always be
the case for a WSN because of the associated stringent energy and
bandwidth constraints. The authors in [5] analyze the distributed
estimation problem by using binary data and by modeling the com-
munication channels as additive white Gaussian noise (AWGN)
channels. They do not consider the effects of channel fading due
to multipath. The concept of fading channels with quantized sensor
data has been studied in [6, 7], but they all assume the availability
of instantaneous channel state information (CSI), which may be too
costly to acquire for a resource constrained WSN. In addition, recent
methods are all based on the assumption of coherent reception at the
fusion center (more specifically BPSK), which requires a complex
receiver at the fusion center and (possibly) training samples from
the sensors to estimate the phase of the carrier of each sensor. In
this paper, we investigate the distributed estimation problem using
binary data transmitted over fading and noisy channels. We propose

to incorporate channel statistics into the likelihood function without
making any assumptions on either the modulation scheme employed
at the sensors or the reception technique employed at the fusion
center. More importantly, we show that by including the channel
statistics into the likelihood function, the resulting maximum likeli-
hood problem is strictly log-concave almost surely as long as at least
one of the channels has nonzero capacity. This result is exciting
since our approach only requires channel statistics rather than the
instantaneous CSI of the wireless channels between sensors and the
fusion center. Furthermore, we propose a sensor threshold design
approach by adopting an objective function based on Fisher Infor-
mation and show that, for symmetric sensor noise distributions, the
sensor threshold design problem is coupled with the channel signal-
to-noise ratio (SNR) and the sensor SNR only if the channel model
is nonsymmetric. In other words, for a fixed sensor background
noise level, sensor thresholds should be channel optimized if the
channels are nonsymmetric.

2. PROBLEM FORMULATION

Let θ ∈ [−U, U ] denote the unknown scalar parameter to be esti-
mated. The received signal at each sensor can be written as follows:

xi = θ + ni, i = 1, . . . , N, (1)

where ni is the i.i.d. zero-mean sensor noise whose probability den-
sity function (pdf) is pn(n; σ)with σ denoting the known noise stan-
dard deviation andN is the total number of sensors. We assume that
sensor noises are independent across sensors. At each sensor, the
received signal xi is quantized into two levels before being sent to
the fusion center. The quantized observation model at sensor i can
be written as

si =

{
0, xi ≤ τ
1, xi > τ,

(2)

where si is the binary observation of the ith sensor and τ represents
the predetermined threshold for the binary quantizer at each sensor.
Let ui denote the transmitted symbol (representing si) from the ith
sensor using a binary modulation scheme. Note that ui can take one
of 2 possible values, i.e., ui ∈ {u(si)

i , si = 0, 1}. A generic system
model is shown in Fig. 1. Each ui is transmitted to the fusion center
via fading and noisy communication channels. The channel gains
as well as the channel noises are assumed to be independent across
different channels and the fading for each channel is assumed to be
slow enough that it can be assumed constant during the transmission
of an observation symbol ui (i=1,. . . ,N). Note that hi and vi denote
the fading channel gain and the channel noise, respectively, for the
ith sensor in Fig. 1. After demodulation, the received observations at
the fusion center can be denoted in vector form as y = [y1 . . . yN ]T .
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Fig. 1. Generic system model.

The fusion center needs to find an estimate, θ̂, for the unknown pa-
rameter based on the received observation vector y.

3. MLE BASED ON CHANNEL STATISTICS

Note that if the instantaneous CSI for every channel is known at the
fusion center, the estimation problem can be formulated as in [5],
only with a difference of incorporating nonidentical channel SNRs
for different channels. Here we consider a more general scenario
where only the probability density function (pdf) of the channels,
i.e., p(hi)’s, are known. For this scenario, the likelihood of an ob-
servation for a given transmitted symbol at sensor i can be written
as

p(yi|ui) =

∫ ∞

0

p (yi|hi, ui) p(hi)dhi. (3)

Note that the channel statistics is incorporated into the likelihood
function in (3). The conditional pdf p (yi|hi, ui) is dependent on the
physical layer of the network (e.g. the modulation scheme and the
reception technique) and so is p (yi|ui). Using (3), the likelihood
function for sensor i is given as

p(yi|θ) =
∑
ui

p(yi|ui)p(ui|θ) (4)

= [1− Pn(τ − θ)]p(yi|ui = u
(0)
i ) + [Pn(τ − θ)]p(yi|ui = u

(1)
i ),

where Pn(·) is the complementary cumulative distribution function
(cdf) of ni. Then it is straightforward to write the log-likelihood
function at the fusion center

Λ(θ) =

N∑
i

ln p(yi|θ), (5)

where p(yi|θ) is given in (4). From (5), the MLE of θ given y is the
solution of the following maximization problem

θ̂ = arg max
θ

Λ(θ). (6)

Proposition 1. a)Λ(θ) is almost surely strictly concave inPn(τ−θ)
for Pn(τ −θ) ∈ (0, 1) provided that at least one of the channels has
nonzero capacity.

b) The Fisher Information for the estimation problem in (3)-(6)
is given by

I(θ) = (7)

∑
i

∫
yi

p2
n(τ − θ)

[
p(yi|ui = u

(0)
i )− p(yi|ui = u

(1)
i )

]2

p(yi|θ) dyi

where p(yi|ui) and p(yi|θ) can be calculated using (3) and (4), re-
spectively, and pn(u) ↔ pn(u; σ).

Proof. a) Following a similar procedure as in [5], the second deriva-
tive of (5) with respect to Pn(τ − θ) is given as

∂2Λ(θ)

∂P 2
n(τ − θ)

= −
∑

i

[p(yi|ui = u
(0)
i )− p(yi|ui = u

(1)
i )]2

p2(yi|θ) (8)

≤ 0.

Note that the equality in (8) is satisfied if all the channels have zero
capacity, i.e., when p(yi|ui = u

(0)
i ) = p(yi|ui = u

(1)
i ) for all yi

and for all i = 1, . . . , N , or if p(yi|ui = u
(0)
i ) = p(yi|ui = u

(1)
i )

for some yi. However, the probability of the latter condition being
satisfied is zero. Therefore, Λ(θ) is almost surely strictly concave in
Pn(τ − θ) if at least one of the channels has nonzero capacity.

b) Using the expression for the Fisher Information which is
given by I(θ) = −E

[
∂2Λ(θ)

∂θ2

]
, the proof can be carried out by tak-

ing the second derivative of Λ(θ) with respect to θ and calculating
the expectation. The rigorous proof is omitted here for the sake of
brevity.

The result in Proposition 1.a guarantees the convergence of the
ML problem to the global optimum in Pn(τ − θ). This result is
useful when the sensor noise distribution has the property such that
the complementary cdf Pn(τ − θ) is a strictly increasing function of
θ (or equivalently one-to-one function of θ). Note that the Gaussian
cdf is an example of this type. In this case, the invariance property
can be used to find θ̂ which is given by

θ̂ = τ − P−1
n (α̂), where α � Pn(τ − θ). (9)

Let us define F (θ) � Pn(τ −θ). Assuming identical channel statis-
tics and identical fixed threshold value at each sensor, the Cramér-
Rao lower bound (CRLB) for this estimation problem reduces to

CRLB(θ) = I(θ)−1 =
1

N
Is(θ)

−1, (10)

where Is(θ) is defined as the per sensor Fisher Information given as

Is(θ) =

∫
y

p2
n(τ − θ)

[
p(y|u = u(0))− p(y|u = u(1))

]2

[1− F (θ)]p(y|u = u(0)) + F (θ)p(y|u = u(1))
dy.

(11)

4. LOCAL SENSOR THRESHOLDS

In order to design optimal sensor thresholds, one needs to define an
objective function in terms of which the optimality is sought. It is
known that the optimal sensor threshold that minimizes the CRLB
under perfect communication channel case is given as τ = θ [3].
Since θ ∈ [−U, U ] is unknown, a cost function which is independent
of θ can be defined as the expected Fisher Information, Eθ[I(θ)],
based on which the optimal sensor thresholds can be designed. With
the same assumptions as in (10), optimum sensor threshold is defined
to be the solution of the following maximization problem:

τ opt = arg max
τ

Eθ[I(θ, τ )] = arg max
τ

Eθ[Is(θ, τ )]. (12)

Note from (12) that by using Eθ[I(θ, τ )] as the objective function,
the problem is decoupled among sensors. In other words, a thresh-
old that maximizes per sensor Fisher Information is the optimum
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threshold for all sensors. However, we need to point out that the
optimal threshold design procedure given in (12) will only work
for low to medium sensor SNR regimes. It is due to the fact that
for high SNR regimes (σ � U ) assigning an identical threshold
value for each sensor will result in severe degradation in the per-
formance for θ values which are approximately in the range θ ∈
[−U, τ − 3σ] ∪ [τ + 3σ, U ]. In that case, it is natural to utilize
different approaches such as using nonidentical thresholds at differ-
ent sensors. Here we focus on the scenario where the sensor SNR
is in the low or the medium range. Assuming that the sensor noise
distribution is symmetric, the followings hold.

Conjecture 1. For θ ∈ [−U, U ], if the channel is symmetric, i.e.,
if p(y|u(0)) = p(−y + μ0 + μ1|u(1)) where μ0 = E[y|u(0)] and
μ1 = E[y|u(1)], then τ opt = arg maxτ Eθ[Is(θ, τ )] = 0.

Let us now denote the channel SNR in dB as ρ.

Conjecture 2. For θ ∈ [−U, U ], if the channel is not symmetric,
i.e., if p(y|u(0)) �= p(−y + μ0 + μ1|u(1)), then

a) τ opt = arg maxτ Eθ[Is(θ, τ )] ≈ 0 only when ρ → −∞.
b) for ρ � −∞, τ opt is a function of both the sensor SNR and

the channel SNR, i.e, τ opt = arg maxτ Eθ[Is(θ, τ )] = f(σ, ρ).

Consider a nonsymmetric channel. Note that if ρ → −∞, then
p(y|u(0)) ≈ p(y|u(1)) for all y, which means that the resulting
channel approaches zero capacity and the condition in Conjecture
1 is satisfied. Then the optimum threshold value that maximizes the
expected Fisher Information approaches zero. We now turn our at-
tention to medium to high channel SNR regimes. Consider a fixed
sensor SNR, i.e., fixed σ. Since, for nonsymmetric channels, each
different channel SNR results in different distributions of p(y|u(0))

and p(y|u(1)), it is clear from (11) that, (12) should result in differ-
ent threshold values for different channel SNRs given a fixed sen-
sor SNR. This introduces the concept of channel optimized sensor
thresholds for nonsymmetric channels. Considering the other sce-
nario in which the channel SNR is fixed, it is again clear from (11)
that (12) should result in different threshold values for different sen-
sor SNRs if the channel is not symmetric. The next section will
provide numerical examples of the scenarios given in Conjectures 1
and 21.

5. NUMERICAL EXAMPLES

In this section, we will investigate two scenarios where each chan-
nel between the sensors and the fusion center is modeled as a unit
power Rayleigh fading channel. The first scenario utilizes coherent
reception at the fusion center employing BPSK as the modulation
scheme. The second scenario utilizes a special case of noncoherent
BFSK modulation scheme, which is ON/OFF keying (OOK). Note
that the second (noncoherent) scenario does not require phase infor-
mation at the fusion center which helps avoid training samples to
estimate phase and/or complex receivers at the fusion center, and it
allows for sensor censoring [8] which can increase network lifetime
by saving sensor energy. For both scenarios, the received signal be-
fore demodulation can be denoted as ỹ = hejφu + v, where φ is the
channel phase and v is a zero-mean complex Gaussian channel noise
with independent real and imaginary parts having identical variance
σ2

v .

1We are currently working on the proofs of the Conjectures 1 and 2.

Consider the first (coherent) scenario where u ∈ {−1, 1}. The
observation model after demodulation at the fusion center is given
as

y = Re{ỹe−jφ} = hu + Re{ve−jφ}, (13)

where Re{ve−jφ} ∼ N (0, σ2
v). Using the unit power Rayleigh

fading pdf p(h) = 2he−h2

(h ≥ 0), p(y|u) is given as [9]

p (y|u) =
2σv√

2π(1 + 2σ2
v)

e
−y2

2σ2
v ×

[
1 + u

√
2παye

(αy)2

2 Q(−αuy)

]
,

(14)
where Q(·) is the complementary distribution function of the Gaus-
sian distribution defined as Q(x) =

∫ ∞
x

1√
2π

e−
t2

2 dt, and α =

1/(σv

√
1 + 2σ2

v). Note that (14) results in a symmetric channel
model. Now consider the second (noncoherent) scenario where u ∈
{0, 1}. The observation model after demodulation (energy detec-
tion) at the fusion center is given as

y = |uhejφ + v|2 (15)

In this case, p(y|u) results in

p (y|u = 0) =
1

2σ2
v

e
− y

2σ2
v (16)

p (y|u = 1) =
1

1 + 2σ2
v

e
− y

1+2σ2
v .

Unlike the first scenario, the second scenario where OOK is em-
ployed results in a nonsymmetric channel model (16). Note that the
resulting observation models (14), (16) can now be substituted in the
log-likelihood function Λ(θ) to perform the ML estimation in (6).
We should note that the closed forms for the CRLBs (10), (11) can
not be obtained for these scenarios. However, the calculations of
the CRLBs can be carried out with high accuracy using a numerical
method such as composite Simpson’s rule [10].

Fig. 2 shows the performance of the MLE estimators for both
scenarios with respect to different number of sensors. Mean square
error (MSE) of the estimator is the performance criterion and each
MSE value is computed based on 10000 Monte Carlo trials. Simu-
lation parameters are as follows. Sensor noise is assumed to be zero
mean Gaussian with standard deviation σ = 1. Channel SNR is
10dB for both scenarios, θ = 1 (sensor SNR = 0 dB) and τ = 1.2.
It is clear from the figure that the ML estimators achieve their per-
formance bounds (CRLBs) for relatively small number of sensors
and low sensor SNRs, and they do not require the knowledge of in-
stantaneous CSIs. The result in Proposition 1 is exploited to find the
global solution to the MLE problem in Pn(τ − θ) by using New-
ton’s algorithm and then the invariance property is invoked to find
θ̂. The performance of the clairvoyant ML estimator [3] which uses
binary data and assumes error-free communications between the sen-
sors and the fusion center is also shown in Fig. 2. Notice that the
performances of the ML estimators developed in Section 3 are very
close to the performance of the clairvoyant estimator and they only
require the information about channel statistics. Especially for the
coherent case, the performance is almost the same as the clairvoyant
estimator.

Now we evaluate the effects of sensor thresholds. Fig. 3 shows
the expected per sensor Fisher Information with respect to different
sensor threshold values for different channel conditions. It is clear
from the figure that for symmetric channels, the optimum sensor
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Fig. 2. Performance comparison of ML estimators for different com-
munication scenarios

threshold is always zero. However, for nonsymmetric channels, op-
timum sensor threshold is no longer zero, and it depends on both the
the channel SNR and the sensor SNR. One can argue that the opti-
mum sensor threshold obtained through the maximization of the ex-
pected Fisher Information does not necessarily minimize the CRLB
due to the nonlinear relationship between them. However, our exper-
imental results in Fig. 4 shows that such T opt leads to the smallest
MSE for this particular problem. For each MSE value in Fig. 4, the
unknown parameter θ is randomly drawn from [−1, 1] using 10000
Monte Carlo trials andN is set to 100. It is clear from the figure that
numerical results support our argument.
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Fig. 3. Expected per sensor Fisher Information with respect to dif-
ferent sensor thresholds

6. CONCLUSIONS

This paper has studied the distributed parameter estimation problem
where the channels are modeled as fading and noisy, and only the
channel statistics are available. We have shown that the resulting
ML formulation which includes channel statistics is concave pro-
vided that at least one of the channels has nonzero capacity and
therefore can be easily utilized to find an estimate which is unbi-
ased and efficient for asymptotic regimes. We have also shown that,
for symmetric sensor noise distributions, the sensor threshold design
problem is coupled with the channel layer and the sensor noise level
for nonsymmetric channels. Our future work includes the extension

−0.4 −0.2 0 0.2 0.4 0.6

10−1

100

τ

M
S

E

−0.4 −0.2 0 0.2 0.4 0.6

10−1

τ

M
S

E

OOK
BPSK
Clairvoyant

ρ = 5 dB, σ = 1

ρ = 10 dB, σ = 1

Fig. 4. Performance of ML estimators with respect to different sen-
sor thresholds

of this analysis to the case of multi-bit data. Furthermore, analytical
expressions for the optimal threshold values need to be derived for
nonsymmetric channels.
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