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ABSTRACT

For a connected network of sensors we consider deriving the
linear update weights required by a 1-hop distributed linear
averaging algorithm (denoted 1-DLA) such that average-
consensus is reached when the sensor nodes simultaneously
track, by linear stochastic approximation, a set of distinct
Markov chains with time-varying regime. It is found the
desired consensus is infeasible for any 1-hop 1-DLA type
algorithm in this setting, which includes the consensus fil-
ter proposed in [2]. However, assuming a symmetric com-
munication graph we show the average-consensus can be
approached with zero asymptotic error by an alternative 1-
hop algorithm (denoted 4-DLA) that requires each sensor
compute 4 estimates {π̂, s, s0, ŝ} rather than only {s} as re-
quired under 1-DLA. We demonstrate a simulation of 4-DLA
and explain its advantages compared to alternative multi-hop
algorithms.

Index Terms— distributed averaging, stochastic approx-
imation, 1-hop algorithm, sensor network, consensus forma-
tion

1. INTRODUCTION

A significant amount of research (e.g. [1]) has explored the
properties of the “static” consensus algorithm

si
k+1 = si

k +

n∑
j=1

Wij(s
j
k − si

k), i = 1, . . . , n, (1.1)

in regard to having each sensor state-value si ∈ R reach
the average-consensus point s̄0 = 1

n

∑n
i=1 si

0, where Wv ∈
R

n×n represents the communication links of network with n
nodes. The sensor communication network can be formally
defined as a graph G = {V(s0), E ,Wv} where s0 denotes a
vector of initial values for the set of nodes V = {1, . . . , n},
E ⊂ V × V is the graph edge set, and Wv the correspond-
ing weighted adjacency matrix that we assume satisfies the
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following constraints,

1.Wv
ij = 0⇔ (i, j) /∈ E , (denotedWv ∈ E) ,

2. (i, j) ∈ E ⇔ (j, i) ∈ E ,
3.

⋂
i∈V

⋃
j∈V{j : (i, j) ∈ E} = V .

The above 3 conditions are not necessary for the dis-
tributed algorithm (1.1) to result in the average-consensus
s̄0, and indeed many works explore the consensus ability of
(1.1) under stochastic or time-varying edge sets, averaging
weights, or in the presence of communication noise. Other
works employ (1.1) as a means to achieve consensus when
each sensor observes a common signal in Gaussian noise, as
well as other tracking models (see [2] and references therein).
Main Results. We show here (1.1) can ensure all sensor

state-values sk weakly-converge to the average-consensus re-
garding the local sensor tracking estimates when assuming
each sensor observes an ergodic Markov chain with time-
varying regime. To introduce the general scenario of this con-
sensus problem, we consider the consensus-tracking ability of
multi-hop algorithms that are more direct than (1.1) but also
require an increase in size of communicated data as well as
the data-storage capacity of each sensor.

1.1. Multi-Hop Average-Tracking

Let each sensor i ∈ V locally observe a unique time-varying
parameter X i ∈ rrS and produces a filtered estimate X̂ i ∈
R

S. The most direct and ubiquitous way to distributively av-
erage the X̂ i across n sensor nodes would be for each node to
transmit, as frequently as possible, its current estimate to all
neighboring nodes, along with a sensor identification number
(i.e. their enumeration i = 1, . . . , n). The receiving nodes
could then relay the same estimate they just received, plus
their own current estimate, to all of their neighboring nodes,
and so on.
If each node contains a vector V of nS elements such that

each sensor in the network is allocated uniquely to a fixed
set of S elements in V , then upon reception of a locally fil-
tered estimate and the associated sensor identification num-
ber, each receiving sensor could simply replace the respec-
tive S elements of V . Supposing each sensors local estimate
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X̂ i converges (in some optimal sense) to the true parame-
ter X i, the S-dimensional average V̄ across the n subsets
of V would then result in the best possible distributed esti-
mate of the current observed parameter averaged across all
nodes X̄ = 1

n

∑n
i=1 X i

0. It is clear this algorithm results
in an average-consensus modulated by the local sensor esti-
mates, and we classify it as a (n− 1)-hop n-DLA type algo-
rithm since each sensor must store n different local estimates,
and also each of those estimates may need to be relayed up
to a maximum of (n − 1) iterations to reach every node in a
network.
The major drawback of this algorithm is that as n in-

creases, both the sensor storage capacity and the number of
communicated estimates per iteration must increase in direct
proportion. Ideally the size of all data transferred between
sensors is kept minimal, thus motivating the extreme opposite
of (n− 1)-hop n-DLA, that is 1-hop 1-DLA type algorithms
(to which many works have been related, e.g. [2]). 1-hop 1-
DLA algorithms require each sensor combine all received es-
timates into a single average and store only that, thus involv-
ing a minimal data transfer yet also requiring, for average-
consensus, a more detailed specification of how to update (i.e.
linearly weight) each sensors stored estimate with those it re-
ceives from its neighbors. For arbitrary �1, �2 ∈ [2, . . . , n−1]
an �1-hop �2-DLA algorithm can be seen as a mixture of
the extreme cases 1 and n. Values of � closer to n may be
beneficial if sensors can readily store and communicate large
amounts of data, or when reliance on specific update weights
cannot be justified. Conversely, 1-hop 1-DLA is advanta-
geous when the storage capacity of each sensor is low or when
the maximum data size that can be communicated per itera-
tion is limited.
We note that for well-designed edge sets, the values

(�1, �2) may be relatively small compared to n, thus implying
�1-hop �2-DLA could in some cases be an optimal consensus
algorithm.

Fig. 1. A graph of 76 nodes and 76 edges. The graph design
is such that a 2-hop 4-DLA over the inner loop could achieve
average-consensus faster than 1-hop 1-DLA. However, 1-hop
1-DLA is also efficient under the correct edge weights [3].

It would seem, however, that for well-designed edge sets
when �1 = �2 = 1 the optimal weights for fast consensus
ensure a marked increase in speed of convergence (see [3]),
thus leading to an interesting problem of efficiency when the

edge set is poorly designed or arbitrary, see Fig.1-2.

Fig. 2. A graph of 76 nodes and 76 edges. The poor graph de-
sign implies 1-hop 1-DLA may be the more practical choice,
although it is relatively slow compared to that under Fig.1.

1.2. 1-Hop 1-DLA Observation and Tracking Model

As a specific observation model for the sensors individual es-
timates, we assume the sensors observe a set of “fast” Markov
chains {X1, . . . , Xn} with aperiodic and irreducible transi-
tion matrices Ai(θ) = (ai

lj(θ)) and a common state-space
S = {e1, . . . , eS} with finite dimension S,

ai
lj(θ) = P (X i

k+1 = ej |X
i
k = el , θk = θ). (1.2)

The parameters X i ∈ R
S×1 are fast in the sense that

their transition matrices remain unscaled on the time-scale
dt = O(μ), in the limit as μ approaches zero. We condition
the transition matrices Ai(θ) on the state of a “slow” Markov
chain θ with finite state-spaceMθ = {θ1, . . . , θm} and tran-
sition matrix,

Pε = I + εQ , (1.3)

where ε is a rate parameter of order O(μ), and Q is the gen-
erator of a continuous-timeMarkov chain θt. From (1.3) it is
clear that, unlike Ai(θ), the transition matrix Pε approaches
identity as μ approaches zero and thus scales on the order of
the time differential dt. For this reason the parameters θ and
X i evolve on two distinct time-scales in the limit as μ → 0.
Upon each observationX i

k we assume sensor i updates its
state-value si ∈ R

S×1 by the linear stochastic approximation
(SA) algorithm,

si
k+1 = si

k + μ(X i
k − si

k) , si
0 = X i

0 , k = 0, 1, . . . . (1.4)

This is a “local” algorithm in the sense that each sensor i ∈ V
operates under (1.4) irrespective of all other sensors j, j ⊂
V\{i}. When μ approaches zero the sequence of iterates {sk}
will weakly-converge to a solution s(·) of the switching ODE

dst

dt
= −st + π(θt), t ≥ 0, (1.5)

where π(θt) = [π1(θt), . . . , π
n(θt)] ∈ R

nS×1 denotes
the vector of stationary distributions of the Markov chains
X1, . . . , Xn, conditional on θ. If we do not assume πi(θ) =
πj(θ) for each pair (i, j) and θ ∈ Mθ, then by (1.4) alone
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each sensor i weakly-converges to πi(θ) and not the average-
consensus π̄(θ) = 1

n

∑n

i=1 πi(θ), see [4] and references
therein.
To achieve the average-consensus π̄(θ) we first consider

a 1-hop 1-DLA with a form similar to the consensus filter
proposed in [2]. Specifically we suppose that, at each time
iteration t ∈ N, each sensor i ∈ V exchanges both their
current state-value si

t and observation value X i
t with each of

their neighbors, and computes as their updated state-value a
weighted average of their current data. Denoting the aver-
aging weight for sensor i and data (sj

t , X
j
t ) is represented

by the (i, j)th element of Wv and Wo, respectively, where
Wo is an arbitrarily weighted adjacency matrix of the graph
Go = {V(s0), E ,Wo}
The above algorithm together with (1.5) may be ex-

pressed by the slow communication dynamics,

st =

{
et̄∗−t(st̄∗ − π(θt)) + π(θt) , if t /∈ N

(I − L−Do)st− +WoXk , if t ∈ N
(1.6)

where t− = limu ↗ t, t̄∗ = maxt∗∈N{t
∗ < t}, L = Dv −

Wv, and Dp = diag(Wp11), p ∈ {o, v}, and 11 denotes a
vector of appropriate dimension with unit valued elements. It
can be shown that if L + Do is positive-definite (PD), then
(1.6) implies that as t∗− increases the sensor state-values st

approach,
( e1 − I +Wo

e1 − I + L+Do

)
π(θt) = Λdiscπ(θt) . (1.7)

For this reason, (1.6) may be seen to be equivalent to,

sk+1 = (I − μL − μDo)sk + μWoXk , (1.8)

in the sense that, as μ approaches zero, the sensors under (1.8)
approach ( Wo

L+Do

)
π(θt) = Λcontπ(θt) (1.9)

which is of the same form as (1.7) with respect to the weight
matrices {Wv,Wo} when (L + Do) is PD. For simplicity,
however, we refer only to (1.8) due the similar expressions
used for both the sensor communication and observation al-
gorithms.

2. AVERAGE-CONSENSUS TRACKING

We first note that since each sensor i privately observes X i,
the estimate π̂i

t = πi(θt) can be achieved locally at each
sensor without need of communication. For this reason,
each sensor i need not distributively obtain the true average-
consensus π̄(θt), but rather only some average in which all
other sensor estimates sj

t , j ⊂ V\{i}, are equally weighted.
Specifically, if either (1.8) or (1.6) ensures each sensor at-
tains some linear combination �i of {πj(θt), j = 1, . . . , n}
of the form

�i = βiπ
i(θt) + βi

∑
j �=i

πj(θt) , (2.10)

for arbitrary constants (βi, β
i �= 0) , i = 1, . . . , n, then as-

suming sensor i knows {βi, βi, �
i, πi(θt), n}, this sensor can

compute the true value of π̄(θt) locally by the simple linear
average,

π̄(θt) =
1

n
[(1/βi)�i + (1− βi/βi)πi(θt)] . (2.11)

This rationale then renders the following result significant.

Lemma 2.1 For any connected graph with a symmetric
weight matrixWv , ifWo = −L+ mI then limm→0 Λcont =
2
n
1111′ − I .

Proof. Since G is connected the Laplacian L = Dv−Wv will
have an eigendecompositionUJU−1 where J is diagonal and
has only its first diagonal element equal to zero (that is L has
an isolated eigenvalue at zero [3]). If we setWo = −L+mI
then Λ takes the form,

Λ = U
(−J + mI

J + mI

)
U−1 = UJ∗U−1 (2.12)

SinceWv is symmetric and thus balanced, taking the limit as
m approaches zero implies the diagonal matrix J∗ will have
one element at 1 and all others at−1 (see for instance [5]). We
then haveΛ = 2/n1111′−I which implies a sensor estimate at
node i of affine form �i, with βi = (2/n− 1) and βi = 2/n.
�

The above lemma suggests each sensor estimate may
asymptotically take the form of (2.10). However, when
Wo = −L + mI , taking the limit as m approaches zero
affects the actual derivation of (1.7) or (1.9) as the correct
expressions for the sensor steady-state under the original
algorithms (1.8) (1.6), as we now show.

Lemma 2.2 For any connected graph with a symmetric
weight matrix Wv , if Wo = −L + mI then limm→0 the
algorithm (1.6) implies all sensor state-values have a steady-
state conditional on θt,

lim
t→∞

st =
1

n
1111′s0 + (

1

n
1111′ − I)π(θt) . (2.13)

Proof. AssumingWo = −L+mI , letWμ = I −μL−μmI
and consider the iteration (1.8) after t∗ = tμ ∈ N occurrences
for some t ≥ 0,

st∗ = W t∗

μ s0 +

t∗∑
l=0

W l
μW

oXt∗−l . (2.14)

Lettingm vanish, we then find in the limit μ approaches zero
that the coefficient of s0 becomes exp{−Lt∗} whereas the
observation input becomes

(e−Lt∗ − I)π(θt∗) (2.15)
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sinceXt∗−l can be estimated π(θt∗) in the limit as μ vanishes.
IfWv is symmetric (and thus balanced) then as t∗ increases
the term exp{−Lt∗}will approach the average-consensus co-
efficient 1

n
1111′, as shown in [5]. �

The above lemma implies that an average-consensus can
be attained by a 1-hop 4-DLA type algorithm in which each
sensor node computes the following estimates,

1. π̂k+1 = π̂k + μ(Xk − π̂k) ,
2. sk+1 computed as in (1.6) or (1.8)
3. s0

k+1 = Wμs0
k , s0

0 = s0 ,
4. ŝt = st − s0

k + π̂k .

(2.16)

The estimate π̂i
k is distinguished from the stationary distribu-

tion πi(θt) not only by using a “hat” but also by omitting its
dependence on θ. Also for clarity the first three steps of (2.16)
have been written in discrete-time, we note that as μ vanishes
the estimates π̂(·) converge weakly to solutions of (1.5) and
(s0

(·), s(·)) follow accordingly [4].

3. SIMULATIONS OF 4-DLA

Letting the communication network be given by a cyclical
graph with 9 nodes and unit edge weights, we demonstrate
the 4 estimates required of the 4-DLA algorithm (2.16) re-
sult in the desired average-consensus π̄(θ). The condition-
ing parameter θ switches twice during the simulation (t1 =
2900μ, t2 = 5400μ, where we take μ = 10−5). The first plot
(Fig.3) presents an example of the estimates {st, (st − s0

t )}
based respectively on steps 2 and 3 of (2.16). We note, as ex-
pected, the sensor state-value trajectories converge exponen-
tially to their respective steady-states. It is also apparent the
initial values s0 have been set approximately twice as large
as the first set of observed values (these values can be seen
in Fig.4 as the asymptotic local sensor tracks π̂i(θt), covering
the range (0 − 100) for the initial θ value). The linear com-
bination (st − s0

t ) is found in Fig.3 to attain a steady-state
with affine form �i (denoted by the horizontal lines). The es-
timates st (based on step 2 alone) remain uninformative due
to the residual initial term.
In Figure 4 the local sensor tracks π̂i

t and the final esti-
mate ŝt are found to converge to the local observed stationary
measure and average-consensus π̄(θt), respectively.

4. CONCLUSION

We proposed a viable 1-hop averaging algorithm (4-DLA) un-
der which all sensors connected within a distributed network
may form an average-consensus when slowly communicating
their current estimates and locally observed parameter values.
This task can be seen infeasible under a 1-hop 1-DLA algo-
rithm such as the distributed consensus filter. Comparisons
with a proposed class of multi-hop averaging algorithms were
considered to clarify some advantages of 1-hop DLA. Simu-
lated sensor state-value trajectories were shown to illustrate
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Fig. 3. The esimates (st − s0
t ) (solid) and st (dotted). The

horizontal lines indicate asymptotic steady-states with the re-
quired affine form �i.
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Fig. 4. The final estimates ŝ (solid lines) of (2.16). The
average-consensus π̄(θt) is denoted by the horizontal row of
circles, and the local estimates π̂i

t are dotted lines.

how the slowly time-varying average-consensus is reached by
4-DLA.
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