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ABSTRACT
We use the theory and algorithms developed for so-called shift-
invariant spaces to develop a novel distributed architecture for sam-
pling and reconstructing non-bandlimited fields in wireless sensor
networks. Our scheme groups neighboring sensors into clusters that
locally perform highly accurate field reconstruction with limited
communication overhead. The overall complexity of our method
scales only linearly with the number of sensors. Numerical sim-
ulations illustrate that the proposed field reconstruction scheme
outperforms band-limited reconstruction, even though the latter has
much larger complexity.

Index Terms— Wireless sensor network, field reconstruction,
shift-invariant space, B-splines

1. INTRODUCTION

Wireless sensor networks (WSN) are becoming more and more pop-
ular as solution to distributed inference problems in quite diverse
monitoring applications [1]. The basic idea is to use remote sensors,
spatially distributed over the region to be monitored, to collect and
process spatial measurements of a physical quantity of interest. In
this paper, we are specifically concerned with the reconstruction of
physical fields from irregular samples provided by the sensors. This
problem has been previously addressed in the literature under the
assumption that the field is strictly bandlimited (BL). An efficient
scheme for the reconstruction of BL fields using a trade-off between
spatial oversampling and sensor quantizer resolution was presented
in [2]. The accuracy of BL reconstruction in WSN using linear filters
and non-uniform sampling was studied using random matrix theory
in [3]. In conventional temporal sampling applications, sufficient
band-limitation is ensured by preceding the sampling with an analog
anti-aliasing filter. With sensor networks, this is inherently impos-
sible since the analog field cannot be accessed or pre-processed. At
the same time, many physical fields are not a priori strictly BL. This
was the motivation for [4] to analyze the errors incurred when using
BL reconstruction in non-BL fields, showing that significant over-
sampling is required to achieve small reconstruction errors.
In this paper, we approach the non-BL field reconstruction prob-

lem in WSN from a different perspective. Specifically, we propose
to use the theory and algorithms that have been developed for shift-
invariant spaces [5] for the purpose of modeling, sampling, and re-
constructing non-BL fields. A major advantage of this approach is
the fact that shift-invariant spaces allow to model smooth functions
(fields) without requiring strict band-limitation. In fact, non-BL
shift-invariant spaces closely resemble non-wave fields (e.g., electro-
static, gravitation, diffusion in liquids and gases) like those consid-
ered in [6]. In addition, there exist efficient interpolation algorithms
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both for regular and irregular sampling sets. Moreover, these algo-
rithms are local in the sense that reconstructing the field at a certain
spatial position requires only samples from a small neighborhood.
We will demonstrate that all these properties render shift-invariant
spaces inherently better suited for WSN applications than BL spaces.
Specifically, we exploit the locality of shift-invariant spaces to re-
duce the communication and computational burden of field recon-
struction. To this end, we develop a field reconstruction protocol
based on a system architecture where the WSN is partitioned into
clusters and a “cluster-head” performs local reconstruction using
only samples obtained within its cluster. Here it is required that the
positions of the sensors that provide samples are known to the cluster
heads. Numerical simulations illustrate that our approach is superior
to BL reconstruction in that it achieves smaller reconstruction errors
with the same number of sensor or allows to deploy fewer sensors to
achieve a prescribed reconstruction quality.
The remainder of the paper is organized as follows. In Section

2, we discuss shift-invariant spaces and their underlying generators.
In Section 3 we introduce our system architecture. In Section 4,
we outline the general approach for reconstruction in shift-invariant
spaces and we then propose an efficient scheme implementing this
reconstructions in a WSN assuming compactly supported generator
functions. Section 5 illustrates the advantages of our approach via
numerical simulations. Finally, Section 6 summarizes the main re-
sults.

2. SHIFT-INVARIANT SPACES

We first review some basic facts about shift-invariant spaces in two
dimensions following [5] but using a terminology adapted to our
WSN setup. A shift-invariant space V (g) is a linear subspace of1

L2(R2) comprising all fields that can be represented as weighted su-
perposition of spatial translates of some generator function g(x, y) ∈
L2(R2), i.e.,

V (g)=

j
f ∈L2(R2) : f(x, y) =

X
(k,l)∈Z2

ck,l g(x−kDx, y−lDy)

ff
.

where ck,l ∈ l2(Z
2). Without loss of generality, we will assume

Dx = Dy = 1 throughout the paper, since this can always be en-
sured via an appropriate scaling of the spatial coordinates x and y.
To guarantee the stability of the representation above, we further as-
sume that the set of translates {g(x−k, y−l)}(k,l)∈Z2 forms a Riesz
basis for V (g) [7].

1Here, L2(R2) is the space of square-integrable fields on R
2,R

R2 |f(x, y)|2dx dy < ∞, and l2(Z2) is the space of square-summable
sequences,

P
k,l∈Z

|ck,l|
2 < ∞.
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Fig. 1. WSN architecture for field reconstruction. The field is recon-
structed locally within each cluster. If desired, the result is forwarded
to the fusion centre.

We note that BL spaces are actually special cases of shift-
invariant spaces, obtained with the separable sinc-type generator

gBL(x, y) �
sin(Bxπx)

Bxπx

sin(Byπy)

Byπy
(1)

where Bx and By denote the spatial bandwidths. Note that (1)
decays rather slowly. Hence, the corresponding space V (gBL) is
non-local, i.e., in the sampling/reconstruction problem the value
of f(x, y) depends on samples that are arbitrarily far away from
(x, y). This is clearly undesirable and motivates the use of genera-
tor functions with compact support, i.e., supp g ⊆ [−S/2, S/2] ×
[−S/2, S/2]. Here, the support of g(x, y) is defined as

supp g � cl
˘
(x, y) ∈ R

2 : |g(x, y)| > 0
¯
,

where cl{·} denotes topological closure. A particularly useful class
of compactly supported generator functions is given by basis-splines
(B-splines). Specifically, we will use two-dimensional spline func-
tions in the following, constructed as gN (x, y) = g̃N(x)g̃N(y), with
the one-dimensional splines of order N defined via the N -fold con-
volution

g̃N(x) � Π(x) ∗Π(x) . . . ∗ Π(x)| {z }
N times

, (2)

with the rectangular function Π(x) = g̃0(x) defined as

Π(x) �

(
1, |x| ≤ 1

2
,

0, else.

The support of the two-dimensional splines is given by suppgN =
[−SN/2, SN/2]× [−SN/2, SN/2] with SN = N + 1. Due to this
compact support, the shift-invariant spaces V (gN) are not BL. It is
interesting and important in our application context that V (gN) is lo-
cal, i.e., according to the representation f(x, y) =

P
k,l

ck,l gN (x−

k, y − l), the field value f(x0, y0) at any position (x0, y0) depends
on at most S2

N = (N + 1)2 coefficients.

3. WSN ARCHITECTURE

We consider a WSN consisting of I sensors/nodes, which are de-
ployed over a certain region A to monitor the physical field f(x, y),
assuming that f(x, y) ∈ V (g) with compactly supported g(x, y).
The measurements taken by the sensors are noisy samples of the
physical field f(x, y), i.e., fi = f(xi, yi) + wi. Here, (xi, yi) ∈ A
denotes the position of the ith sensor and wi subsumes measurement
and quantization noise. We consider a clustered system architecture
(see Fig. 1) where the monitored region is divided intoM subregions
Am, m = 1, . . . , M , such that

SM

m=1 Am = A. These subregions
may overlap and have different size. The sensors within each sub-
area Am form a cluster Cm.
Within each cluster there is one node which serves as cluster-

head. The mth cluster-head collects the measurements from all
nodes i ∈ Cm within its cluster and computes estimates ĉk,l of
the coefficients of f(x, y) within Am according to the algorithm
outlined in Section 4. This presupposes that the cluster-heads know
the positions of all sensors within the cluster. We note that the case
M = 1 corresponds to a centralized setup with a single fusion
center.
The choice of the sub-regions Am is determined by the sup-

port S � supp g = [−S/2, S/2] × [−S/2, S/2] of the generator
function and by the sensor density. Specifically, the reconstruction
algorithm outlined below requires that the number Im = |Cm| of
measurements (sensors) within Am must be larger than the number
of field coefficients to be estimated (denoted Jm, see below). We
note that for BL field reconstruction this condition can never be met
(i.e., local reconstruction is impossible) due to the infinite support of
gBL(x, y). Hence, BL fields require a centralized architecture (one
“cluster” comprising all sensors).
Depending on the application, the estimated coefficients ĉk,l can

be used to reconstruct the field within each subregion. Alternatively,
the cluster-heads can forward the coefficients to a fusion center that
globally reconstructs the field. Some of the field coefficients may be
calculated by more than one cluster. In this case, the fusion center
may average the multiple coefficient estimates for improved perfor-
mance.
We emphasize the distributed nature of our WSN architecture,

i.e., only local communication and computation is required. Further-
more, if reconstruction fails for a certain cluster Cm, this has only
a local effect, i.e., it is still possible to reconstruct f(x, y) within
A\Am. Moreover, it will be seen below that with our model, the
complexity of field reconstruction is extremely low, i.e., only lin-
ear in the number of measurements and quadratic in the size of the
generator’s support.

4. FIELD RECONSTRUCTION

4.1. Reconstruction Scheme

By extending [7] to two dimensions, we next show how the field
f(x, y) ∈ V (g) can be reconstructed within one sub-region Am

from a finite number Im = |Cm| of (noisy) samples, assuming that
their positions are known and that the generator is compactly sup-
ported. For simplicity of exposition, we assume rectangular sub-
regions Am.
Since any field value is completely determined by a neighbor-

hood corresponding to S ,reconstruction within Am only requires
the coefficients ck,l lying within Am + S . Correspondingly, least-
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squares field reconstruction amounts to minimizing

X
i∈Cm

˛̨̨
˛ X
(k,l)∈Z2

m

ck,l g(xi−k, yi−l) − fi

˛̨̨
˛2. (3)

Here, g(x, y), (xi, yi), and fi are the known quantities and the op-
timum coefficients, denoted ĉk,l, have to be determined for (k, l) ∈

Z
2
m � Z

2 ∩ (Am+S). The problem (3) leads to a system of linear
equations (see below) whose solution requires at least Im ≥ Jm �

|Z2
m| measurements fi to be obtained within Am. Once the opti-
mum coefficients ĉk,l have been computed, the field within Am can
be reconstructed as

f̂(x, y) =
X

k,l∈Z2
m

ĉk,l g(x− k, y − l) , (x, y) ∈ Am. (4)

4.2. Matrix Formulation

We next provide a reformulation of field reconstruction in terms of
matrices and vectors. Let (k0, l0) and (k1, l1) denote the smallest
and largest indices, respectively, in Z

2
m such that Jm = K(l1 − l0 +

1) withK � k1 − k0 + 1. We define the Im × Jm matrix

[G]j,n = g
`
xij

− kn, yij
− ln

´
, (5)

where ij , j = 1, . . . , Im, denotes the indices of the sensors located
in Am (i.e., Cm = {i1, . . . , iIm}), kn = k0−1+(n mod K), and
ln = l0 +

¨
n−1
K

˝
(here, �t	 denotes the largest integer not larger

than t). We emphasize that G will be a sparse matrix whenever
Am is larger than S . Indeed, g

`
xij

− kn, yij
− ln

´

= 0 only if

|xij
− kn| ≤ S/2 or |yij

− ln| ≤ S/2, which can happen for at
most

˚
|S|

ˇ
= �S�2 of the Jm elements in each row (�t� is the

smallest integer not smaller than t). Thus, only a fraction of roughly
|S|/|Am| of the elements in each row ofG are non-zero.
Corresponding to (5), the measurements and unknown coeffi-

cients are arranged into respective vectors f and c according to

[f ]j = fij
, [c]n = ckn,ln . (6)

These definitions allow to rewrite the minimization problem (3) as

ĉ = arg min
c

‖Gc − f‖.

The optimum coefficient vector ĉ is thus obtained as solution to the
associated normal equations [8],

G
H
Gĉ = G

H
f ,

i.e., ĉ = (GH
G)−1

G
H

f . We note that this presupposes GH
G to

be invertible, which is just another consequence of the requirement
that there have to be enough appropriately spaced samples available.
Technically, the sensor positions (xi, yi), i ∈ Cm, have to form a sta-
ble sampling set [7]. For the one-dimensional case, stable sampling
sets for B-spline spaces are well understood. This is not true for the
two-dimensional case, where even in the BL case only probabilistic
statements have been obtained recently [9].

4.3. Algorithm

In the following, we summarize all algorithmic steps necessary to
perform field reconstruction and we give estimates of their compu-
tational complexity.

Preprocessing. Solving the normal equations requires computation
of the positive semi-definite Jm × Jm matrix T = G

H
G:

[T]n′,n =

ImX
j=1

g∗(xij
− kn′, yij

− ln′) g(xij
− kn, yij

− ln).

Here, superscript ∗ denotes complex conjugation. Due to the com-
pact support of g(x, y) and the corresponding sparsity of G, it fol-
lows that T is also sparse. Since T is sparse and positive definite,
the normal equations can efficiently be solved using a sparse LDL
factorization [8], i.e., T = LDL

T . Both, the calculation and the
factorization of T need O(Im�S�4) operations. Note that the com-
putation of T requires only the sensor positions and the generator
function and can hence be performed by the cluster-head in advance
before any actual measurements fi are obtained.

Field reconstruction. First, f̄ = G
H
f is computed according to

[f̄ ]n =

ImX
j=1

g∗(xij
− kn, yij

− ln) fij

The sparsity of G resulting from the compact support of g(x, y)
allows to perform this step withO(Im�S�2) operations. Finally, we
solve the normal equations Tĉ = f̄ for ĉ. Using the pre-computed
sparse factorization of T, this amounts to solving LDL

T
ĉ = f̄ via

forward elimination and back substitution [8]. The coefficients ĉ are
therefore obtained with complexity O(Im�S�4). Finally, the field
can be reconstructed at any point (x, y) ∈ Am according to (4).
This requires O(�S�2) operations per spatial point.

5. NUMERICAL SIMULATIONS

We next present numerical results to illustrate the performance of
our distributed sampling and reconstruction scheme. The simulated
WSN was deployed over the square region A = [0, 10] × [0, 10].
We consider two different sensor placements: i) ideal placement on
a regular rectangular lattice (dx k, dy l) with k, l ∈ Z; ii) place-
ment on a regular rectangular lattice with jitter (the jitters were i.i.d.
uniform within [−dx/4, dx/4] × [−dy/4, dy/4]). Our WSN archi-
tecture usedM = 4 clusters corresponding to the square sub-regions
A1 = [0, 5] × [0, 5], A2 = [5, 10] × [0, 5], A3 = [0, 5] × [5, 10],
and A4 = [5, 10] × [5, 10]. Field reconstruction was performed us-
ing B-spline spaces V (gN) of various order N . For comparison, we
show results obtained with a centralized architecture using BL inter-
polation in V (gBL) for the whole region A (with gBL(x, y) clipped
to the region of interest). We emphasize that the complexity of the
latter is much higher.
We first present results obtained with a WSN consisting of I =

442 sensors with jittered positions (note that the jittered positions
still are accurately known by the cluster-heads). The fields f(x, y) ∈
V (g3) were generated with random i.i.d. normally distributed co-
efficients ck,l. Fig. 2(a) shows the normalized mean square error2

(MSE)

MSE =
E

˘
‖f̂ − f‖2

¯
E

˘
‖f‖2

¯ (7)

versus the signal-to-noise ratio SNR � E{|f(x, y)|2}/E{|wi|
2} for

our distributed architecture using the correct generator g2(x, y) (thus
S = S2 = 3) and for a centralized architecture performing BL re-
constructions using gBL(x, y) in (1) with Bx = By = 1. It is seen
that our distributed scheme outperforms BL reconstructions for all

2Here, E{·} denotes mathematical expectation (with respect to the ran-
dom field and the random sensor positions).
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Fig. 2. Comparison of B-spline and BL interpolation: (a) MSE versus SNR for I = 442, (b) MSE versus number of regularly placed sensors
at infinite SNR, (c) MSE versus number of sensors with jittered placement at infinite SNR.

SNRs in spite of the its much lower complexity. In particular, the
non-BL nature of the fields result in an error floor of BL reconstruc-
tion at high SNR (see Fig. 2(a)).
In a second example, we consider fields belonging to a shift-

invariant space V (ḡ) induced by a Gaussian generator function, i.e.,

ḡ(x, y) = e−λ2(x2+y)2 . (8)

with λ = 1.33 (again, the true coefficients were i.i.d. normally dis-
tributed). Such spaces are useful models for diffusion fields (cf. [6]).
We emphasize that the Gaussian generator is neither compactly sup-
ported nor BL. Our distributed scheme attempted reconstruction us-
ing B-spline generators with N ∈ {0, 1, 2, 3}. BL reconstruction
was performed as before. In these experiments, infinite SNR was
assumed (i.e., wi = 0).
The reconstruction results in terms of MSE versus number

of sensors I for ideal and jittered sensor placement are shown in
Figs. 2(b) and (c), respectively. Note that even though there is no
noise, all schemes feature an error floor which is due to the fact
that none of the interpolation spaces is matched exactly to the fields
under consideration. With ideal sensor placement and more than
about I = 160 sensors, B-spline reconstructions outperforms BL
interpolation for all orders except N = 0, with gains as high as
15 dB in the case of the optimal choice N = 2. It is also seen that
the MSE obtained with N = 4 is higher than with N = 2, which
can be attributed to oversmoothing.
Similar observations can be made for the case where the sensor

positions are affected by jitter. Specifically, for dense networks with
many sensors, B-spline reconstruction offers similar gains as in the
case of ideal sensor placement. The major difference here is that
for small number of sensors, the sensor positions more frequently do
not provide a stable sampling set for the B-spline spaces, resulting
in larger MSE. Note however that in these situations reconstruction
typically fails locally, which is not reflected by our plots. Moreover,
the computational complexity of our distributed architecture more
than I = 1000 nodes is less than that of BL reconstruction using a
few hundred sensors.

6. CONCLUSION

We proposed a cluster-based sensor network architecture for sam-
pling and reconstruction of non-bandlimited fields. Our approach

builds on recent progress regarding non-uniform sampling in shift-
invariant spaces. The major advantages of our scheme are excellent
reconstruction quality, low computational complexity (linear in the
number of sensors), and low communication overhead. In our future
work, we plan to study the energy efficiency of our scheme (from a
communication and computation perspective) in order to be able to
choose the network and cluster size such that performance is opti-
mized while guaranteeing maximum network lifetime.
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