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ABSTRACT
We introduce a distributed adaptive estimation algorithm operating
in an ideal fully connected sensor network. The algorithm estimates
node-specific signals at each node based on reduced-dimensionality
sensor measurements of other nodes in the network. If the node-
specific signals to be estimated are linearly dependent on a common
latent process with a low dimension compared to the dimension of
the sensor measurements, the algorithm can significantly reduce the
required communication bandwidth and still provide the optimal lin-
ear estimator at each node as if all sensor measurements were avail-
able in every node. Because of its adaptive nature and fast conver-
gence properties, the algorithm is suited for real-time applications
in dynamic environments, such as speech enhancement in acoustic
sensor networks.

Index Terms— Distributed estimation, wireless sensor net-
works (WSNs), adaptive estimation, distributed compression

1. INTRODUCTION

In a sensor network [1] a general objective is to utilize all informa-
tion available in the entire network to perform a certain task, such
as the estimation of a parameter or signal. In many multi-node esti-
mation frameworks the measurement data is fused, possibly through
a fusion center, to estimate a common parameter or signal assumed
to be the same for each node (e.g. [2–6]). This can be viewed as
a special case of the more general problem where each node in the
network estimates a different node-specific signal. In this paper, we
introduce a distributed adaptive node-specific signal estimation algo-
rithm (DANSE), operating in an ideal fully connected network. The
algorithm is based on reduced-dimensionality sensor observations to
reduce the required communication bandwidth.

We will not make any assumptions on the data measured by the
sensors. All node-specific desired signals, i.e. the signals to be es-
timated, are assumed linearly dependent on a common latent ran-
dom process. If this process has a low dimensionality in compari-
son to the dimension of the sensor observations, the DANSE algo-
rithm can exploit this to significantly compress the data to be broad-
cast by each node. Assuming the communication links are ideal,
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the algorithm will converge to the exact minimum mean squared er-
ror (MMSE) estimate at each node as if all sensor measurements
were available in every node. Unlike other compression schemes for
multi-dimensional sensor data (e.g. [4–6]), the algorithm does not
need prior knowledge of the intra- and inter-sensor cross-correlation
structure of the network. Nodes estimate and re-estimate all neces-
sary statistics on the compressed data during operation.

Because of its adaptive nature and fast convergence properties,
the algorithm is particularly relevant in dynamic environments, such
as real-time speech enhancement. A pruned version of the DANSE
algorithm, referred to as distributed multi-channel Wiener filter-
ing (db-MWF), has partly been addressed in [7] and was used for
microphone-array based noise reduction in binaural hearing aids (i.e.
a network with 2 nodes). Optimality and convergence was proven
for the case of a single desired speech source. The general DANSE
algorithm introduced in this paper generalizes this to a scheme with
multiple desired sources and more than 2 nodes, where convergence
to an optimal estimator is still guaranteed.

This paper is organized as follows. The problem formulation
and notation are presented in section 2. In section 3, we first address
the simple case in which the node-specific desired signals are scaled
versions of a common single dimension latent random variable. This
is generalized to the case in which the node-specific desired signals
are linear combinations of a Q-dimensional latent random variable
in section 4. In section 5, we introduce a modification to the scheme
that yields convergence when nodes update simultaneously, which
permits parallel computation and uncoordinated updating. Conclu-
sions are given in section 6.

2. PROBLEM FORMULATION AND NOTATION

Assume an ideal fully-connected network with J sensor nodes, i.e.
a broadcast by any node can be captured by all other nodes in the
network through an ideal link. Each node k has access to observa-
tions of an Mk-dimensional random complex measurement variable
or signal yk. Denote y as the M dimensional random vector in

which all yk are stacked, where M =
∑J

j=1
Mj . In what follows,

we will use the term ‘single-channel/multi-channel signal’ to refer to
one-dimensional/multi-dimensional random processes. The objec-
tive for each node k is to estimate a complex desired signal dk that
is correlated to y. For the sake of an easy exposition, we assume
dk to be a single-channel signal. In section 4, we will generalize

this to multi-channel signals. We use a linear estimator d̂k = wH
k y

for node k with wk a complex M dimensional vector and super-
script H denoting the conjugate transpose operator. Unlike [5, 6],
we do not restrict ourselves to any data model for y nor do we make
any assumptions on the statistics of the desired signals and the sen-
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sor measurements, except for an implicit assumption on short-term
stationarity. We will use a minimum mean squared error (MMSE)
criterion for the node-specific estimator, i.e.

wk = arg min
wk

E{|dk −wH
k y|2} , (1)

where E{.} denotes the expected value operator. We define a parti-
tioning of the vector wk as wk = [wT

k1 . . . wT
kJ ]T where wkq is

the part of wk that corresponds to yq . The equivalent of (1) is then

wk =

⎡
⎢⎢⎣

wk1

wk2

...
wkJ

⎤
⎥⎥⎦ = arg min

{wk1,...,wkJ}
E{|dk −

J∑
l=1

wH
kl yl|2} . (2)

The objective is to solve all J different MMSE problems, i.e.
one for each node. Each node k only has access to yk which is a
subset of the full data vector y. Notice that this approach differs
from [2,3], where the objective was to fit a linear model with coeffi-
cients w, which are assumed to be equal for all nodes in the network,
and where each node has access to different outcomes of the full data
vector y and the joint desired signal d. In that case, only the estima-
tion parameters must be transmitted, allowing for e.g. incremental
strategies.

Assuming that the correlation matrix Ryy = E{yyH} has full
rank, the solution of (1) is

ŵk = R−1
yy rk (3)

with rk = E{yd∗
k}, where d∗

k denotes the complex conjugate of dk.
rk can be estimated by using training sequences, or by exploiting on-
off behavior of the desired signal, e.g. in a speech-plus-noise model,
as in [7].

To find the optimal MMSE solution (3), each node k has to
broadcast its Mk-channel signal yk to all other nodes in the network,
which requires a large communication bandwidth. One possibility to
reduce the bandwidth is to broadcast only a few linear combinations
of the Mk signals in yk. In general this will not lead to the optimal
solution (3). In many practical cases however, the dk signals are cor-
related through a common latent random process. The most simple
case is when all dk = d, i.e. the signal to be estimated is the same
for all nodes. We will first handle the more general case where all
dk are scaled versions of a common latent random variable d. For
this scenario, we will introduce an adaptive algorithm, in which the
amount of data to be transmitted by each node k is compressed by a
factor Mk. Despite this compression, the algorithm converges to the
optimal node-specific solution (3) at every node as if each node has
access to the full M -channel signal y.

This scenario can then be extended to a more general case where
all desired signals dk are linear combinations of a Q-dimensional
random process or signal. If each node is able to capture the Q-
dimensional signal subspace generating the dk’s, then the amount of
data to be transmitted by each node k can be compressed by a factor
Mk
Q

, and still the optimal node-specific solutions (3) are obtained at

all nodes. This means that each node k only needs to broadcast Q
linear combinations of the signals in yk.

3. DANSE IN A SINGLE-DIMENSIONAL SIGNAL SPACE
(Q=1)

The algorithm introduced in this paper is an iterative scheme referred
to as distributed adaptive node-specific signal estimation (DANSE),
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Fig. 1. The DANSE1 scheme with 3 nodes (J = 3). Each node k
estimates a signal dk using its own Mk-channel signal, and 2 single-

channel signals broadcast by the other two nodes.

since its objective is to estimate a node-specific signal at each node in
a distributed fashion. In the general scheme, each node k broadcasts
a multi-channel signal with min{K, Mk} channels. We will refer
to this with DANSEK , where the subscript denotes the number of
channels of the broadcast signal. For the sake of an easy exposition,
we first introduce the DANSE1 algorithm for the simple case where
K = 1. In section 4 we will generalize these results to the more
general DANSEK algorithm.

The algorithm is described in batch mode. The iterative charac-
teristic of the algorithm may therefore suggest that the same data
must be broadcast multiple times, i.e. once after every iteration.
However, in practical applications, iterations are spread over time,
which means that subsequent iterations are performed on different
signal segments. By exploiting the implicit assumption on short-
term stationarity of the signals, every data segment only needs to be
broadcast once, yet the convergence of DANSE and the optimality
of the resulting estimators, as described infra, remains valid.

3.1. The DANSE1 algorithm

The goal for each node is to estimate the signal dk via the linear

estimator d̂k = wH
k y. We aim to find the MMSE solution (3) in

an iterative way, without the need for each node to broadcast all
channels of the Mk-channel signal yk. Instead, each node k will
broadcast the signal zi

k = wi H
kk yk, with superscript i denoting the

iteration index and wi
kk the estimate of wkk as defined in (2) at iter-

ation i. This reduces the data to be broadcast by a factor Mk. This
means that each node k only has access to yk, and J − 1 linear
combinations of the other channels in y, generated by wi H

qq yq with
q ∈ {1, . . . , J}\{k}.

In the DANSE1 scheme, a node k can scale the signal wi H
qq yq

that it receives from node q by a scalar gi
kq . The structure of wi

k is
therefore

wi
k =

⎡
⎢⎢⎣

gi
k1w

i
11

gi
k2w

i
22

...

gi
kJwi

JJ

⎤
⎥⎥⎦ (4)
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where node k can only optimize the parameters wi
kk and gi

k =
[gi

k1 . . . gi
kJ ]T . We assume that gi

kk = 1 for any i to minimize
the degrees of freedom. We denote gi

k−k as the vector gi
k with en-

try gi
kk omitted. A schematic illustration of the DANSE1 scheme is

shown in figure 1.
The DANSE1 algorithm consists of the following iteration steps:

1. Initialize the iteration index i ← 0. For every q ∈ {1, ..., J}:
initialize wqq and gq−q with non-zero random vectors w0

qq

and g0
q−q respectively. Initialize k ← 1, denoting the next

node that will update its local parameters wkk and gk−k.

2. Node k updates its local parameters wkk and gk−k to mini-
mize the local MSE, given its inputs consisting of the signal
yk and the compressed signals zi

q = wi H
qq yq that it received

from the other nodes q �= k. This comes down to solving the
smaller local MMSE problem:[
wi+1

kk

gi+1
k−k

]
= arg min

wkk,gk−k

E

{∣∣∣∣dk −
[
wH

kk | gH
k−k

] [
yk

zi
−k

]∣∣∣∣
2
}

(5)

with zi
−k =

[
zi
1 . . . zi

k−1z
i
k+1 . . . zi

J

]T
. The parameters of

the other nodes do not change, i.e.

∀ q ∈ {1, . . . , J}\{k} : wi+1
qq = wi

qq, gi+1
q−q = gi

q−q . (6)

3. k ← (k mod J) + 1
i ← i + 1

4. Return to step 2

3.2. Convergence and optimality of DANSE1 if Q = 1

Assume that all dk are a scaled version of the same signal d, i.e.
dk = αkd, with αk a non-zero complex scalar. Formula (3) shows
that in this case, all ŵk are parallel, i.e.

ŵk = αkqŵq ∀ k, q ∈ {1, ..., J} (7)

with αkq = α∗
k/α∗

q . This shows that the global-network MMSE
solution (3) at each node k is in the solution space defined by the
parametrization (4).

Theorem 3.1. Let dk = αkd, ∀ k ∈ {1, . . . , J}, with d a single-
channel complex signal and αk ∈ C\{0}. Then the DANSE1 algo-
rithm converges for any initialization of the parameters to the MMSE
solution (3) for any k.

Proof. Omitted.

4. DANSE IN A Q-DIMENSIONAL SIGNAL SPACE

4.1. The DANSEK algorithm

In the DANSEK algorithm, each node broadcasts a K-channel sig-
nal to other nodes. This compresses the data to be sent by node k
by a factor of

Mk
K

. If the desired signals of all nodes are in the same
Q-dimensional signal subspace, K should be chosen equal to Q (see
section 4.2). We assume that each node k estimates a K-channel
desired signal1 dk = [dk(1) . . . dk(K)]T . The signal(s) of inter-

1The number of linearly independent signals in dk should be at least K.

For notational convenience, but without loss of generality, we assume that

dk contains exactly K signals. If the number of signals is higher than K,

DANSEK selects K linearly independent signals of dk which will be used

for the information exchange. The remaining estimations can be handled

internally by node k.

est can be a subset of this vector, in which case the other entries
should be seen as auxiliary signals to capture the Q-dimensional

signal space. Again, we use a linear estimator d̂k = WH
k y =

[wk(1) ... wk(K)]Hy. The objective for every node k is to find the
solution of the MMSE problem

min
Wk

E
{
‖dk −WH

k y‖2
}

. (8)

The solution of (8) is

Ŵk = R−1
yy Rk (9)

where Rk = E
{
ydH

k

}
. We wish to obtain (9) without the need

for each node to broadcast all channels of the Mk-channel signal
yk. Instead each node k will broadcast the K-channel signal zi

k =
Wi H

kk yk with Wi
kk the submatrix of Wi

k applied to the channels of
y to which node k has access.

A node k can transform the K-channel signal that it receives
from node q by a K ×K transformation matrix Gi

kq . The structure
of Wk is therefore

Wi
k =

⎡
⎢⎢⎣

Wi
11G

i
k1

Wi
22G

i
k2

...

Wi
JJGi

kJ

⎤
⎥⎥⎦ . (10)

Node k can only optimize the parameters Wi
kk and Gi

k = [Gi T
k1 . . .Gi T

kJ ]T .
We assume that Gi

kk = IK for any i with IK denoting the K ×K
identity matrix.

Using this formulation, DANSEK is a straightforward general-
ization of the DANSE1 algorithm as explained in section 3.1, where
all vector-variables are replaced by their matrix equivalent. When
node k updates its local variables Wkk and Gk, it will solve the
local MMSE problem defined by the generalized version of (5), i.e.[

Wi+1
kk

Gi+1
k−k

]
= arg min

Wkk,Gk−k

E

{
‖dk −

[
WH

kk |GH
k−k

] [
yk

zi
−k

]
‖2

}
(11)

with zi
−k =

[
zi T
1 . . . zi T

k−1z
i T
k+1 . . . zi T

J

]T
.

4.2. Convergence and optimality of DANSEK if Q = K

A sufficient condition to assure that DANSEK will converge to (9),
is that dk = Akd with Ak a K × K full rank matrix and d a K-
channel complex signal. This means that all desired signals dk are
in the same K-dimensional signal subspace (i.e. Q = K). Formula
(9) shows that in this case all ŵk(n) for any k and n are in the same
K-dimensional subspace. This implies that

∀ k, q ∈ {1, ..., J} : Ŵk = ŴqAkq (12)

with Akq = A−H
q AH

k . Expression (12) shows that the MMSE
solution (9) at each node k is in the solution space defined by the
parametrization (10).

Theorem 4.1. Let dk = Akd, ∀ k ∈ {1, . . . , J}, with d a com-
plex K-channel signal and Ak a full rank K ×K matrix. Then the
DANSEK algorithm converges for any initialization of the parame-
ters to the MMSE solution (9) for any k.

Proof. Omitted.
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It can be proven that convergence of the DANSEK algorithm
is at least as fast as the centralized equivalent that would use an
alternating optimization (AO) technique (cfr. [8]) with partitioning
following directly from the parameters J and Mk for each node.

5. PARALLEL COMPUTING AND UPDATING

A disadvantage of the DANSEK algorithm as described in the earlier
sections is that nodes update their parameters sequentially. This im-
plies that nodes cannot estimate their local correlation matrices and
compute their inverses in parallel. Furthermore, sequential updating
implies the need for a network-wide updating protocol.

In general, convergence of sequential iteration (Gauss-Seidel it-
eration) does not imply convergence of simultaneous updating (Ja-
cobi iteration). Extensive simulations show that this also holds for
the DANSEK algorithm: if nodes update simultaneously, the algo-
rithm does not always converge. To achieve convergence with si-
multaneous updates2, one should modify the DANSEK algorithm to
a relaxed version. This means that a node will update its parameters
to an interpolation point in between the newly computed parameters
and the current parameters.

Consider the following update procedure that is performed for
all k in parallel:

Gi+1
k = arg min

Gk

E{‖dk −
J∑

q=1

GH
kqW

i H
qq yq‖2} (13)

Wi+1
kk = (1− αi)Wi

kkG
i+1
kk + αiFk(Wi) (14)

with αi ∈ (0, 1], Wi =
[
Wi T

11 . . .Wi T
JJ

]T
, and Fk denoting the

function that generates a new estimate for Wkk according to the
DANSEK update (11). The following theorem describes a strategy
for the stepsize αi that guarantees convergence to the optimal pa-
rameter setting:

Theorem 5.1. Assume all assumptions of theorem 4.1 are satisfied.
Then the sequence {Wi

k}i∈N as in (10), generated by the update
rules (13)-(14) with stepsizes αi satisfying

αi ∈ (0, 1] , (15)

lim
i→∞

αi = 0 ,

∞∑
i=0

αi = ∞ , (16)

converges for any initialization of the parameters to the MMSE so-
lution (9) for any k.

Proof. Omitted.

The update rule (13) increases the computational load at every
sensor, since it solves an MMSE problem in addition to the implicit
MSE minimization in Fk(Wi). However, extensive simulations in-
dicate that this is not necessary. The Gi+1

k−k in (11), that are generated

as a by-product in the evaluation of Fk(Wi), also yield convergence
if the relaxed update (14) is applied, with Gi

kk = IK ∀ i ∈ N.
The conditions (16) are quite conservative and may result in

slow convergence. Extensive simulations indicate that in many

2In the rest of this section, we only consider simultaneous updates. As

long as every node updates an infinite number of times, all results remain

valid in an asynchronous updating scheme, where each node decides inde-

pendently when and how often it updates its parameters. This removes the

need for an updating protocol.

cases, the parallel procedure converges without relaxation, i.e.
αi = 1, ∀ i ∈ N. If this is not the case, a constant value αi = α0,
∀ i ∈ N, is observed to always yield convergence to (9), if α0 is
chosen small enough.

6. CONCLUSIONS

In this paper, we have introduced a distributed adaptive estimation
algorithm for node-specific desired signals operating in a fully con-
nected network in which nodes exchange reduced-dimension sensor
measurements. If the signals to be estimated are all in the same low-
dimensional signal subspace, the algorithm converges to an optimal
estimator for each signal. The required statistics can be estimated
and re-estimated during operation on the compressed sensor obser-
vations, rendering the algorithm suitable for application in dynamic
environments. We introduced a relaxed version of the algorithm that
also yields convergence when nodes compute and update simultane-
ously or asynchronously.
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