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ABSTRACT

Self localization in sensor networks with measurements that include
outliers is an important problem. E.g., distance measurements based
on non-line-of-sight observations can be quite wrong. If not han-
dled properly, such outliers can greatly influence the positioning ac-
curacy. To achieve robustness we consider positioning with Huber
estimators. The Huber cost function interpolates between the ¢; and
the /2 norms. The minimization of the Huber cost function can be
efficiently obtained via iterative majorization techniques, with the
advantageous property of guaranteed convergence to a local mini-
mum.

Index Terms— lterative majorization, robust location estima-
tion, time-of-arrival, sensor networks, localization, Huber cost func-
tion

1. INTRODUCTION

In this paper we are concerned with the self localization problem
in sensor networks [1]. Mathematically speaking, the problem is not
new. It has long been an issue of great interest to obtain a low dimen-
sional representation from pairwise similarity measurements among
objects, which is studied in statistics as multidimensional scaling
(MDS) [2]. The node location estimation problem can also be for-
mulated as non-linear programming hence a range of iterative tech-
niques are applicable [3]. An important issue here is the problem
of divergence. For a large number of sensors, computational com-
plexity is relevant: the number of unknown parameters in a sensor
network with N nodes can be as large as 3NV, and applying nonlinear
programming may require the inversion of 3N X 3N matrices.

Iterative majorization techniques emerged as an important way
of solving the multidimensional scaling problem. These algorithms
have the advantage of simple implementation and guaranteed con-
vergence to a local minimum. E.g., SMACOF [2] is an iterative
majorization based solution of the least squares multidimensional
scaling problem. A distributed version of SMACOF was developed
in [4], henceforth referred to as Costa’s algorithm. The main advan-
tage of Costa’s algorithm is the fact that it does not require matrix
inversion and can be implemented in a parallel and distributed man-
ner.

Self localization in sensor networks with measurements that in-
clude outliers apparently has not received much interest. It is how-
ever a relevant issue. Specifically for indoor environments we may
expect erroneous measurements due to non-line-of-sight propaga-
tion. A method based on the EM algorithm is provided [5]. The main
drawback of this method is the need to specify outlier statistics—
this information may not be available. When outlier statistics are not
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known a common technique is to use M-Estimators [6]. These esti-
mators modify the least squares cost function in such a way that large
residuals are down-weighted. A popular choice would be to use the
£1 norm. This line of research in the context of MDS has been in-
vestigated by Heiser in 1987 [7]. Nevertheless there is a singularity
problem in the way majorization has been done. To circumvent this
problem Heiser proposes to use Huber cost function instead of ¢,
norm but provides no solution in [7]. Instead Heiser cites [8] for fur-
ther discussions. In [8] Heiser did not explicitly consider the sensor
network positioning problem but studied a somewhat related prob-
lem called reciprocal location problem. In Heiser’s words “... the
problem of locating two p dimensional configuration of points with
respect to each other in such a way that the weighted sum of inter-
point distances is minimal.” Heiser solved the problem by iterative
majorization techniques, leading to the LARAMP algorithm.

In this paper we follow up on this work and propose to use this
little-known technique for sensor localization in the presence of out-
liers. Each step in the resulting iterative majorization problem is
subsequently solved using Costa’s algorithm. This maintains the ad-
vantage that it does not require matrix inversion or SVD, and can be
implemented in a parallel and distributed manner.

2. PROBLEM FORMULATION

A typical sensor network localization is as follows. Let d;; denote
a measurement of the distance between nodes ¢ and j. The aim is
to find the elements of the matrix X whose ith column x; contains
the Cartesian coordinates of the ith sensor node. d;;(X) denotes the
true distance between node ¢ and node j based on the distance matrix
X. We assume that there are N 4 M sensor nodes in the network.
The first N sensors have no or imperfect a priori knowledge about
their position. The last M sensors have perfect knowledge of their
location. These sensor nodes are anchor nodes. In this formulation
the matrix X takes the following form:

X = [Xl, ceey XNy XN A1y eeey XN+]VI] .
Related to this, let us define the following index sets:
S={1,2,.,N}
Si={i+1,.,N+M}.

The position estimation problem can be formulated as a minimiza-
tion problem of a variety of functions. A common choice is the least
squares cost function,

FOX) =D wi (05 — diy (X))?,
i€S jES;

where w;; is a weight for the connection between node 7 and j. If
there is no connection between these nodes (the distance between
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7 and j is not measured), set w;; = 0. The solution to the result-
ing minimization problem is considered in statistics and a particular
solution based on iterative majorization algorithms is the SMACOF
algorithm [2].

A second cost function, with a reputation of robustness to out-
liers, is obtained by replacing the ¢2 norm by /1, i.c.,

f(Q) ZZwZJMU_ dij (X)] .

€S jES;

This line of research is investigated in [7]. As noted, the function
is not differentiable at its minimum and is hard to majorize, leading
to a degeneracy that makes the problem incomplete and numerically
unstable. Heiser [7] mentions this problem and refers to [8] where
he proposes to use Huber’s cost function.

Huber’s cost function interpolates between the ¢ norm mini-
mization and ¢; minimization, i.e.,

>N wip(8y — dij(X)),

i€S jES;

fOX) =

where the Huber cost function p(-) is given as

_[ v ly| < k
o0 ={ By i, Sk
For small k, this is equivalent to f(?)(X), but it avoids the singu-
larity at 0. Although the problem is not entirely solved, important
insights are provided in [8] on how the majorization function can be
chosen.

In a different development, Costa et al. [4] consider the case
where about some nodes we have some stochastic a priori knowledge
on their location: a mean location X; and a variance 1/r;. This leads
to a minimization of the following cost function,'

FOX) =303 wis (G — di(X))* + 3 rills — il

i€S JES; €S

We refer to the solution to this problem as Costa’s algorithm.
We aim to solve the following combined problem in this paper:

FOX) =303 wiap(Giy — dis (X)) + 3 rillxi — %l

i€S jJES; i€S

3. MAJORIZATION

3.1. Iterative majorization algorithm

In this section we briefly discuss the basic idea behind the iterative
majorization technique [2] and how it is applied to the problem of
positioning. Let us assume that we want to find the minimum of the
function f(X). We want to construct a function g(X,Y) such that
it satisfies

9(X,Y) > f(X)
9(Y,Y) = f(Y).

Beyond this, it is essential that g(X,Y) is easier to minimize (for
fixed Y). In this formulation Y denotes a supporting point, i.e., the

UIn fact, they consider a straightforward extension of this which includes
multiple measurements.
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current best estimate of X. In the algorithm, the successor support-
ing point is obtained as

X" = argming(X,Y).
x

From here we can state that

fX®) < g(X*Y) <g(Y,Y) = f(Y),

which proves convergence to a local minimum. The resulting algo-
rithm is defined as follows:
1. Set’Y =Y, where Y denotes the initial starting point
2. Find update X" = arg miny ¢(X,Y)
3. IfF(Y) —
4. Set’ Y = X" and go to step 2.

The problem is reduced to finding a suitable majorizing function
9(X,Y).

f(X™) < ¢, stop (e is a small positive constant)

3.2. Majorizing the cost function £ (X)
Let
hij (X) = 16ij — dij (X))
and define
fi3(X) = wijp(dij — di (X)) .
In this notation we can write one term in f® (X) as

(X)) = hij (X) < k
f” (X) o { kaijhij (X) — wijk2,

hij(X) > k.

The following majorizing function is proposed (the form is anal-
ogous to the one proposed in [8] for a different h;;):

gi;(X,Y) =
wijhi; (X)), hij(Y) < k
kw;
h“(Y]') hz]( )—i—kw” i (Y) — K wij, hii(Y) >

It remains to show that the criteria for a majorizing function are sat-
isfied. The proof follows that of [8]. First note that

9i (Y, Y) = fi;(Y).
We now need to prove that
9 (X, Y) > fi;(X).

Depending on h;;(X) and h;;(Y), there are four cases to be con-
sidered separately.

In the first case assume that h;;(X) < k and hy;(Y) < k. In
that case by definition we have equality: ¢;;(X,Y) = f;;(X).

In the second case assume that h;;(X) > k and h;;(Y) < k
Then

(k= hi; (X)) >0
& k4 h5(X) — 2khi; (X) >0
& wihi(X) > 2kwihi (X) — K wij .

It follows that g;; (X, Y) > fi;(X).



In the third case now assume that h;;(X) > k and h; (Y) > k.
Then we need to prove that
kwiihi; (X
wjij() =+ kwijhij (Y) — k2wij > 2kwijhij (X) — kaij .
hi;j (Y)
We can do this in a very simple manner,

%”Y())() + kwijhij(Y) Z 2kw¢jh¢j(X)

h;(X)

hi; (Y)

& h(X) + hi(Y) > 2k (X)hi (Y)
& (hiy(X) = hi; (Y))* > 0.

+ hij (Y) = 2hi;(X)

The last statement is always true. Finally, in the fourth case, assume
that h;;(X) < k and hi; (Y) > k, so that

0< h”(X) <k < hlj(Y) .

From here we may write that

- hi;(X) c1< hz‘jliY)
h; (X) hi; (Y)
- 1<
¢ TR < %

and conclude that
& h5(X) < khij(Y).
If i (Y) > k, we can multiply both sides by (hi; (Y)—k) to obtain
(hij (Y) = k)h35(X) < khij (Y)(hij(Y) = k)
& hij(Y)hi(X) < khi;(X) + khi;(Y) — k*hij (Y)
2
%(YX)) + khij (Y) — k*

kwi;h2(X)
iih2 < Wy AT
& wijhi;(X) < s (Y)

=

s h(X) <
+ kwijhi; (Y) — wigk?,

which shows ¢;;(X,Y) > f;;(X). It remains to consider the case
where h;;(Y) = k. In that case the final equation becomes an equal-
ity. This proves that g;; (X, Y) satisfies the criteria for a majorizing
function.

A majorizing function for f ) (X) is now immediately obtained

9XY) =33 0(XY) + ) millxi — x|

i€S JES; i€S

as

We can optimize f® (X) via the iteration in section 3.1. In each
step, for fixed Y, the majorized cost function reduces to a nonlinear
least squares problem of the same form as (¥ (X).

4. A SUMMARY OF COSTA’S ALGORITHM

Atevery step of the iterative majorization algorithm we need to solve
a nonlinear least squares problem of the form f ) (X). For this we
propose to use Costa’s algorithm [4], as it is of low complexity. This
algorithm is again based on an iterative majorization. For complete-
ness, we summarize this algorithm for the case at hand.
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Forp = 1,2, - until convergence, compute
X§p+1) = a; (’I"Z)_CZ + X(p)bgp)) , ’L = 17 .« 7]\]
where
N N+M
ai_lz Z wij + Z 2wij + 1y
J=1,5# j=N+1
and bi.p) = [bi1, biz, -+, bint+a]T, the entries of which are
given as
bij = wij (1—5ij/di]-(x<”))), J#LJ<N
N N+M
b= widiy/dig(XP)+ Y 2wiibis/diy(X)
J=1g#i J=N+1
bij = 2’(1)7;]' (1 — 5”/d1] (X<p>)) s ] > N.

5. SIMULATIONS

The following simulation was performed to provide some insight
into the performance of the proposed algorithms.

Fig. 1 shows the true locations of 100 sensors in a sensor net-
work. We assume that all the sensors have connectivity with each
other, in other words w;; # 0. Sensors numbered from 91 to 100
have known coordinates and the rest of sensors have unknown co-
ordinates. All the sensor nodes with known coordinates have y-
coordinate 10, in other words they lie on the upper line of the sensor
network.

Fig. 2 shows the estimated locations for this sensor network, for
a case where 4 nodes are malfunctioning and any pairwise distance
measurement that involves these malfunctioning nodes is an outlier
measurement which was obtained by adding 10 to the true distance.
The noise variance on the pairwise distance measurements is set
at 0.1 for all measurements. In the proposed algorithm, the Huber
threshold was set to & = 0.01. As can be seen from the figure,
the malfunctioning nodes do not disturb the location estimates of the
rest of the nodes. This is the robustness result we aimed to achieve.
(However there is no hope for localizing the outlier nodes.)

For comparison, Fig. 3 shows the estimated locations based on
the least squares cost function f @, using Costa’s algorithm. We
used the same outlier setup as in the previous section. As can be seen
from the figure the outlier nodes significantly influence the estima-
tion accuracy of the whole sensor network except the anchor nodes.
This result demonstrates the advantage of using robust algorithms.

6. CONCLUSION

As shown in the simulations, outliers can greatly influence position-
ing accuracy for algorithms based on least squares cost functions.
The Huber cost function provides a robust estimator, which can be
calculated using iterative majorization algorithms. Although this
gives good performance, the price paid for robustness is increased
computational complexity. In our experience, the proposed algo-
rithm may have slow convergence.
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Fig. 2. Position estimation using the proposed algorithm. There are
4 outlier nodes and 10 reference nodes (top row). The outliers do not

influence the location estimates of the other nodes.
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Fig. 3. Position estimation using least squares localization. There
are 4 outlier nodes and 10 reference nodes (top row). The outliers

greatly influence the location estimates.

2052

2

—

(3]

(4]

(31

(6]

(7]

(8]

1. Borg and P. Groenen, Modern multidimensional scaling: The-
ory and applications, Springer, New York, 1997.

D. P. Bertsekas, Nonlinear Programming, Athena Scientific,
Belmont, Massachusetts, 1999.

J. A. Costa, N. Patwari, and A. O. Hero, “Distributed weighted
multidimensional scaling for node localization in sensor net-
works,” ACM Transactions on Sensor Networks, vol. 2, no. 1,
pp- 39-64, Feb. 2006.

J.N. Ash and R. L. Moses, “Outlier compensation in sensor net-
work self localization vie the EM algorithm,” in Proceedings of
the IEEE International Conference on Acoustics, Speech, and
Signal Processing ICASSP, Philadelphia, US, Mar. 2005, pp.
749-752.

P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier
detection, Wiley, New York, 1987.

W. J. Heiser, “Multidimensional scaling with least absolute
residuals,” in Proceedings of the first conference of the inter-
national federation of classification societies (IFCS), Aachen,
Germany, June 1987, pp. 455—462.

W. J. Heiser, Notes on the LARAMP algorithm, Internal report,
Dept. of Data Theory, Leiden University, 1987.



