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ABSTRACT
Adaptive beamforming algorithms typically rely on a complex linear
model between the sensor measurements and the desired signal out-
put that does not enable the best performance from the data in some
situations. In this paper, we present an extension of the well-known
recursive least-squares algorithm for adaptive filters to widely-linear
complex-valued signal and system modeling. The widely-linear
RLS algorithm exploits a structured covariance matrix update that
maintains information about the non-circularity of the input data
to solve the widely-linear least-squares task at each snapshot. In
addition, the WL-RLS algorithm can easily be switched between
conventional and widely-linear complex modeling as needed. Ap-
plication of the method to adaptive beamforming of mixed BPSK
and QPSK signal transmissions shows that the system can extract all
of the transmitted signal outputs in certain overloaded scenarios, and
it performs up to 3dB better than the conventional RLS beamformer
when the array is not overloaded.

Index Terms— adaptive arrays, adaptive filters, adaptive sys-
tems, least squares methods, recursive estimation

1. INTRODUCTION

Adaptive filters are used in a number of practical applications in dig-
ital communications, medicine, speech processing, and digital image
processing. Adaptive filters enable one to implement a time-varying
linear filter to model signal relationships, remove unwanted noise,
or enhance a particular desired signal component when two signal
sets, termed the input signals and the desired response signals, re-
spectively, are available. The two most-popular adaptive filtering
methods are the least-mean-square algorithm of Widrow and Hoff
[1] and the recursive least-squares algorithm that is a special case of
the well-known Kalman filter for state space estimation [2].

Usually, adaptive filters are designed to process real-valued sig-
nals, although complex extensions of some adaptive algorithms ex-
ist. These complex extensions have typically treated the input-output
relationship as complex linear, which implies a certain structure on
the input-output relationship of the system. For example, for anM -
antenna adaptive beamformer with coefficients {g1(n), . . . , gM (n)}
at iteration n, the output signal of the filter at time k is typically

y1,n(k) =

MX
m=1

gm(n)xm(k), (1)

where xm(k) is the mth sensor signal at time k. We can also con-
sider the model in which the input signals are conjugated, given by

y2,n(k) =
MX

m=1

hm(n)x∗

m(k), (2)

where {h1(n), . . . , hM (n)} are the coefficients of the adaptive
beamformer. It is important to realize that for a given set of co-
efficients {gm(n)}, it is typically impossible to choose values for
{hm(n)} such that y1,n(k) = y2,n(k); thus, the above two lin-
ear operations represent two different input-output relations that
produce different output signals for the same complex input signals.

Linear adaptive systems involving complex-valued signals play
an important role in beamforming for multi-port antenna arrays.
Such systems exploit spatial diversity to build one or more signal
estimates from a set of measured signals. For a uniform linear array
(ULA), an appropriate signal model for a set of received signals
{xm(k)}, 1 ≤ k ≤ M is

xm(k) = ηm(k) +

NX
i=1

δm(φi)si(k) (3)

δm(φ) = exp

„
−j2π

Δsin(φ)

γ
(m− 1)

«
(4)

where si(k) is the signal from the ith user at time k, φi is the angle of
arrival of the ith narrowband signal with respect to the array normal,
Δ is the inter-element antenna spacing, γ is the wavelength, and
ηm(k) is the complex-valued sensor noise at the mth sensor. Using
either the structure in (1) or (2), it is possible to produce an output
signal that estimates one of the user signals si(k) or s∗i (k). Parallel
versions of this structure can be used to estimate several user signals
simultaneously.

The difference between (1) and (2) suggests a model that uses
both {xm(k)} and {x∗

m(k)} as input signals. Such models are
termed widely linear. The widely-linear model between {xm(k)}
and yn(k) is

yn(k) =

MX
m=1

gm(n)xm(k) + hm(n)x∗

m(k), (5)

This model has twice the number of complex coefficients than ei-
ther of the models in (1) or (2). More importantly, it has a modeling
capability that is more capable than that of either (1) or (2) [4]–[8].
For example, using (5), it is possible to build beamformers that ac-
curately estimateN user signals bsi(k) when there are more users N
than antennas M , if two or more of the user signals are real-valued.
Such performance overcomes a chief limitation ofM -antenna array
systems when one of the output signal models in (1) or (2) is used.

This paper describes a novel recursive least-squares algorithm
for adapting the coefficients of the widely-linear model in (5) to min-
imize the well-known exponentially-weighted least-squares cost

J (w(n)) =

nX
k=0

λn−k|d(k)− yn(k)|2, (6)
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where d(k) is the complex-valued desired response signal, λ is a
forgetting factor, and

yn(k) = v
H(k)w(n), (7)

v(k) =

»
x(k)
x∗(k)

–
(8)

w(n) =

»
h(n)
g(n)

–
(9)

g(n) = [g1(n) · · · gM (n)]T (10)
h(n) = [h1(n) · · · hM (n)]T (11)
x(n) = [x1(n) · · · xM (n)]T . (12)

This paper thus provides competing algorithms to previously-
proposed approaches involving gradient descent, as exemplified in
the augmented complex LMS algorithm [3]. The ACLMS algorithm
updates the parameters of the widely-linear model as

g(n) = g(n− 1) + μ(n)(d(n)− yn−1(n))x∗(n) (13)
h(n) = h(n− 1) + μ(n)(d(n)− yn−1(n))x(n). (14)

Because it is a stochastic gradient descent algorithm, ACLMS suf-
fers from convergence issues not unlike the complex LMS and real-
valued LMS algorithm in certain situations. It is expected that re-
cursive least-squares formulations to the widely-linear signal esti-
mation problem will have the same benefits and drawbacks as recur-
sive least-squares approaches for real-valued signal processing when
compared to gradient methods, namely, better estimation abilities at
the price of increased computational complexity. It is our primary
goal in this paper, therefore, to show a minimum-complexity imple-
mentation of the recursive least-squares approaches, one which we
achieve by leveraging the block-conjugate structure of the associated
data covariance matrices that appear in the derivations.

2. DERIVATION OF THEWIDELY-LINEAR RLS
ALGORITHM

It is straightforward to show that the optimum solution to the mini-
mization task of (6)–(12) is

w(n) ≡

»
h(n)
g(n)

–
= R

−1

v
(n)f

v
(n), (15)

where

R
v
(n) ≡

»
Rx(n) Px(n)
P∗

x
(n) R∗

x
(n)

–
(16)

=
nX

k=1

λn−k

»
x(k)xH(k) x(k)xT (k)
x∗(k)xH(k) x∗(k)xT (k)

–
(17)

f
v
(n) ≡

»
f1(n)
f2(n)

–
=

nX
k=1

λn−k

»
x(k)d(k)
x∗(k)d(k)

–
(18)

and

Rx(n) =
nX

k=1

λn−k
x(k)xH(k) (19)

Px(n) =
nX

k=1

λn−k
x(k)xT (k) (20)

f1(n) =

nX
k=1

λn−k
x(k)d(k) (21)

f2(n) =

nX
k=1

λn−k
x
∗(k)d(k) (22)

The key issue in developing a computationally-efficient algo-
rithm for WL-RLS is to recognize that the inverse ofR

v
(n) has the

same block conjugate structure asR
v
(n); i.e»

Rx(n) Px(n)
P∗

x
(n) R∗

x
(n)

–
−1

=

»
C(n) D(n)
D∗(n) C∗(n)

–
. (23)

To see this fact, consider the product»
Rx(n) Px(n)
P∗

x
(n) R∗

x
(n)

– »
C(n) D(n)
D∗(n) C∗(n)

–
=

»
I 0

0 I

–
.(24)

From this relation, four are revealed:

Rx(n)C(n) + Px(n)D∗(n) = I (25)
Rx(n)D(n) + Px(n)C∗(n) = 0 (26)
R

∗

x
(n)C∗(n) + P

∗

x
(n)D(n) = I (27)

R
∗

x
(n)D∗(n) + P

∗

x
(n)C(n) = 0 (28)

Clearly, the latter two matrix equations are simply conjugates of the
first two matrix equations, which themselves are sets of 2L2 complex
equations in 2L2 complex unknowns and are solvable. Thus, the
inverse structure in (23) is valid, although it should be noted that
C(n) �= R−1

x
(n), and other simple relations between D(n) and

Px(n) also do not hold. With this recognition, we see that

h(n) = C(n)f1(n) + D(n)f2(n) (29)
g(n) = D

∗(n)f1(n) + C
∗(n)f2(n) (30)

The value ofR
v
(n) can be updated as

R
v
(n) = λR

v
(n− 1) + v(n)vH(n). (31)

Using the matrix inversion lemma, we can express

R
−1

v
(n) =

1

λ

`
R

−1

v
(n− 1)

−R
−1

v
(n− 1)v(n)c−1(n)vH(n)R−1

v
(n− 1)

”
,(32)

where

c(n) = λ + v
H(n)R−1

v
(n− 1)v(n). (33)

Using the definition of C(n) andD(n) afforded by the relationship
in (24), we have

C(n) =
1

λ

“
C(n− 1)− u(n)c−1(n)uH(n)

”
(34)

D(n) =
1

λ

“
D(n− 1) − u(n)c−1(n)uT (n)

”
(35)

u(n) = C(n− 1)x(n) + D(n− 1)x∗(n), (36)

where we have used the properties that C∗(n) = CT (n) and
D(n) = DT (n). Furthermore, by substitution of (23) into (33), we
can obtain

c(n) = λ + x
H(n)u(n) + x

T (n)u∗(n) (37)
= λ + 2Re{xH(n)u(n)} (38)

Now, noting that

f1(n) = λf1(n− 1) + x(n)d(n) (39)
f2(n) = λf2(n− 1) + x

∗(n)d(n) (40)
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we may substitute (39) and (40) into (34) and (36). For the first
equation, we see that

C(n)f1(n) =
1

λ

“
C(n− 1)− u(n)c−1(n)uH(n)

”
× (λf1(n− 1) + x(n)d(n)) (41)

= C(n− 1)f1(n− 1) +
1

λ
C(n− 1)x(n)d(n)

−u(n)c−1(n)uH(n)f1(n− 1)

−
1

λ
u(n)c−1(n)uH(n)x(n)d(n) (42)

and

D(n)f2(n) = D(n− 1)f2(n− 1) +
1

λ
D(n− 1)x∗(n)d(n)

−u(n)c−1(n)uT (n)f2(n− 1)

−
1

λ
u(n)c−1(n)uT (n)x∗(n)d(n) (43)

Combining these terms, it can be shown that

h(n) = h(n− 1)

+u(n)c−1(n)
h
d(n)− u

H(n)f1(n− 1) + u
T (n)f2(n− 1)

i
(44)

It can also be shown that

u
H(n)f1(n− 1) + u

T (n)f2(n− 1)

= x
H(n)h(n− 1) + x

T (n)g(n− 1), (45)

such that the update for h(n) is

h(n) = h(n− 1) + e(n)k(n) (46)
e(n) = d(n)− x

T (n)g(n− 1)− x
H(n)h(n− 1) (47)

k(n) = c−1(n)u(n). (48)

A similar update to that in (46) holds for g(n), except k∗(n) is used
in place of k(n). Thus, the complete updates are

e(n) = d(n)− x
T (n)g(n− 1) − x

H(n)h(n− 1) (49)
u(n) = C(n− 1)x(n) + D(n− 1)x∗(n) (50)
k(n) = (λ + 2Re{xH(n)u(n)})−1

u(n) (51)

C(n) =
1

λ

“
C(n− 1)− u(n)kH(n)

”
(52)

D(n) =
1

λ

“
D(n− 1)− u(n)kT (n)

”
(53)

g(n) = g(n− 1) + e(n)k∗(n) (54)
h(n) = h(n− 1) + e(n)k(n) (55)

Equations (49)–(55) are the widely-linear RLS algorithm. Several
remarks about this algorithm can be made:

Remark #1: The WL-RLS algorithm reduces to the conventional
RLS algorithm for complex linear input-output relationships if we
set D(n) = 0 and either g(n) = 0 or h(n) = 0 for all n, and we
modify the Kalman gain as

k(n) = (λ + Re{xH(n)u(n)})−1
u(n) (56)

In such cases, u(n) = C(n − 1)x(n) and C(n) = R−1

x
(n). This

result means that, depending on how large the magnitudes of the
entries of g(n) are with respect to h(n), we may switch from the

WL-RLS algorithm to the conventional RLS algorithm by setting
either g(n) or h(n) to zero and not updating the zeroed coefficient
vector, removing the entries of D(n) in the updates, and defining
k(n) as above. Similarly, if we have either g(n) or h(n) active in
the estimation process and wish to switch to the widely-linear model,
we can switch back to the complete algorithm by allowingD(n) to
be non-zero again and updating all parameters according to the WL-
RLS algorithm.

Remark #2: The computational complexity of the WL-RLS algo-
rithm is about twice that of the conventional RLS algorithm when
applied to complex data.

Remark #3: The conventional real-valued RLS algorithm is known
to have issues of numerical stability when implemented in finite-
precision arithmetic [9]. These issues can typically be addressed by
maintaining a minimum-parameter implementation of the system, in
which symmetry of the inverse autocorrelation matrix at time n is
maintained. Although a stability analysis of the WL-RLS algorithm
has not been performed, we suspect that it, too, suffers from similar
numerical instabilities. Fortunately, a minimum-parameter imple-
mentation of WL-RLS can be obtained by maintaining the symme-
tries ofC(n) andD(n) as

C(n) = C
H(n) (57)

D(n) = D
T (n) (58)

by only propagating the unique values within each of these matrices
and copying the appropriate matrix entries to their associated identi-
cal value locations. Our implementations make use of this structure,
and we have not observed any numerical issues in any of our simu-
lations of the approach.

Remark #4: The performance of the WL-RLS algorithm is identical
to that of two real-valued RLS algorithms in which the input signal
for each algorithm is the vector [Re{xT (n)} Im{xT (n)}]T and the
desired responses are Re{d(n)} and Im{d(n)}, respectively. More-
over, the computational complexity of the two approaches, in terms
of numbers of real-valued multiplies, are also about the same, if sym-
metries in appropriate matrices are taken into account. Thus, there is
no performance or computational gain to be obtained by using WL-
RLS over a conventional two-channel real-valued RLS algorithm in-
volving common input signals. The convenience of the widely-linear
processing model, however, is in its partitioning of the input data
statistics into circular and non-circular portions, and the partitioning
of the model into conventional complex and widely-linear portions.

3. BEAMFORMING EXAMPLES

We now show the advantage of WL-RLS in a beamforming con-
text. Let x(k) fit the narrowband array model in (4), where the nor-
malized sensor spacing is Δ/γ = 1/2, the number of sources is
N = 4, and the number of elements is M = 3. Because M ≤ N ,
it is not possible to resolve each source using a traditional com-
plex least-squares beamformer using either y1,n(k) or y2,n(k) in
(1) or (2). It is possible, however, to resolve all four sources us-
ing yn(k) in (5) if two or more of the sources are real-valued. Let
s1(k) and s2(k) be two independent rotated BPSK signals, and let
s3(k) and s4(k) be two independent QPSK signals. Furthermore,
let {φ1, φ2, φ3, φ4} = {−45◦, 8◦,−13◦, 30◦}, and let the complex
Gaussian measurement noise be such that the signal-to-noise ratio
(SNR) of each source in each sensor is 25dB. We apply four versions
of the complex RLS as well as the WL-RLS algorithms to this data,
where di(k) = si(k), λ = 0.99, C(0) = 100I, and D(0) = 0.
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Fig. 1. Output signal constellations for the WL-RLS beamformers.
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Fig. 2. Output signal constellations for the RLS beamformers.

Shown in Fig. 1 are the baseband output signal constellations for
20 ≤ n ≤ 200 using the widely-linear RLS algorithm, in which the
BPSK and QPSK output signal patterns are readily evident. Fig. 2
shows the corresponding outputs for the standard RLS algorithm, in
which the BPSK and QPSK output signal patterns are not resolved
for sources 2 and 3 and are barely resolvable for sources 1 and 4.

Fig. 3 shows the convergence of the squared errors for the nor-
malized complex LMS, normalized augmented complex LMS, RLS,
and WL-RLS algorithms as computed from 100 different data sets
with these particular statistics, where we have chosen μLMS =
μACLMS = 0.2 to try to obtain the fastest convergence from the
gradient approaches without significant noise enhancement. Clearly,
ACLMS converges much more slowly than the other approaches,
and while LMS converges quickly, its final NLSE is too large to be
useful. Only the WL-RLS algorithm obtains both fast convergence
and a low NLSE at convergence in this example.

Table 1 shows the average NLSE as a function of the number of
antenna elements for the RLS and WL-RLS algorithms for each of
the source types in this scenario, where 2 ≤ M ≤ 8. As can be seen,
the WL-RLS algorithm outperforms the RLS algorithm forM ≤ N .
When M > N , the BPSK NLSE is approximately 3dB better for
the former algorithm, and the QPSK NLSEs are approximately the
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Fig. 3. Average NLSEs for the four beamformers in the data exam-
ple.

Table 1: Steady-State NLSEs (dB) vs. number of antenna elements
Algorithm M
(Signal Type) 2 3 4(N) 5 6 8
RLS (BPSK) -3.0 -5.9 -21.9 -24.8 -24.7 -24.4

WLRLS(BPSK) -4.7 -20.1 -24.9 -27.6 -27.5 -27.0
RLS (QPSK) -5.8 -10.1 -24.6 -27.6 -27.8 -27.3

WLRLS(QPSK) -7.5 -25.4 -26.8 -27.5 -27.5 -27.3

same. The 3dB performance improvement in BPSK signal estima-
tion provided by widely-linear modeling is well-understood [6].

4. CONCLUSIONS

This paper presents a conventional recursive least-squares algo-
rithm for widely-linear signal and system modeling. The algorithm
leverages the block conjugate structure of the augmented data cor-
relation matrix to minimize the computational complexity of the
coefficient updates. Numerical examples show that the proposed
method outperforms both gradient approaches and conventional
RLS approaches in adaptive beamforming tasks.
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