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ABSTRACT

Weakly electric fish have the ability to navigate and locate

prey in the dark using a unique weak electrosense system.

Imitating that ability of electric fish, we develop an electric-

field sensing system capable of high-resolution imaging of

the surrounding environment, by use of a novel beamform-

ing technique that exploits the sparsity of sources in a scanned

space. Both simulation and experimental results show that the

sparse beamforming technique accurately images not only a

single object but also multiple objects with highly correlated

signals.

Index Terms— Weakly electric fish, electrosensors, elec-

trolocation, sparse beamforming, basis pursuit.

1. INTRODUCTION

Weakly electric fish have been a subject of intense study in

neurobiology for their ability to emit and sense electric fields.

This ability allows them to hunt in total darkness and muddy

environments where vision becomes useless [1, 2]. While bi-

ologists aim at understanding this sensory mechanism in fish

[3, 4], engineers, on the other hand, focus on applying the un-

derstanding to design systems and techniques that can imitate

this ability. Recent works by MacIver et al show that they

can build robotic systems with an electric sense to locate and

track objects either underwater or in the air [5, 6, 7].

Our work advances one step further by devising an

electric-field sensing system that is able not only to local-

ize an object but also to image the surrounding environment,

even with multiple objects. Such a ‘distant touch’ imaging

sense would be an invaluable attribute for future underwater

vehicles in intrusion detection, target tracking and especially,

close-in maneuvering. In fact, our previous work [8, 9] also

developed a near-field sensing system using biomimetic fluid-

flow sensors to image local fluid-flow sources in water. In

that work, we used a Capon (MVDR) adaptive beamforming

technique to generate near-field images. However, the Capon

method and other conventional beamforming techniques fail

for multiple objects when they are highly correlated.

This work was supported by the DARPA BioSenSE Program under

Grant FA-9550-05-1-0459.

In this paper, we develop a novel sparse beamforming

technique that assumes that the image of multiple sources in

the surrounding environment is actually sparse. The beam-

forming problem can then be transformed into a sparse signal

reconstruction problem Ax = b, where each entry of the vec-

tor x represents the presence of an object at a given location,

each column vector of the matrix A represents the expected

sensor outputs for the location corresponding to the same row

in x, and b is the sensor measurements. Since there are typi-

cally relatively few sources present in the scanned space, the

vector x has a small number of non-zero entries. Our problem

then becomes the well-known problem of solving an under-

determined linear system of equations under a sparsity con-

dition [10]. Many algorithms have been proposed to solve

this problem, and we use a Basis Pursuit method which turns

this problem into an �1-minimization problem which can be

solved by linear programming [11].

2. UNDERWATER ELECTROLOCATION MODEL

Placing an object with a different conductivity than the sur-

roundings in an electric field alters the field. If the object is

conductive, the electric field moves the free electrons to one

side of the object and creates an induced electric dipole. In

general, when a relatively small sphere of radius a with con-

ductivity σobject is placed in water with conductivity σwater at

the point �r with electric field �Ef , the perturbation caused by

the induced electric field was derived in [3]:

Δφ(�r) =
a3Ef .�r

‖�r‖3
(

σobject − σwater

σobject + 2σwater

)
, (1)

where Δφ(�r) is the change in potential at position �r relative

to the sphere’s center and ‖.‖ is the magnitude of a vector.

Based on the model in (1), we design an electric-field sens-

ing system consisting of two electrodes to form an electric

dipole and an array of electric-field sensors aligned with the

electrodes as shown in Figure 1. This is crudely analogous to

the biological system found in a weakly electric fish, which

generates an oscillating electric field at its head and tail and

which has several hundred electrosensors distributed across

its body. In our system, the electric-field sensors are simply

made of pairs of electrodes placed symmetrically about the

2033978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



Fig. 1. A weakly electric field sensing system

dipole axis. If the dipole has charges of +Q and−Q, then the

electrostatic field at a point is

�Ef =
Q

4πε

(
�rQ+∥∥�rQ+

∥∥3 −
�rQ−∥∥�rQ−

∥∥3

)
, (2)

where �rQ+ and �rQ− are vectors originating from the point

of interest to the electrodes Q+ and Q−, respectively. With-

out an object in the field, each sensor should see zero voltage

across its pair of electrodes. When an object is placed in the

field, the perturbation caused by the object can be measured in

term of voltages across all sensors based on equations (1) and

(2). These perturbations on the sensors form an array pattern.

The array pattern changes according to the position of the ob-

ject. Figure 2 shows the simulated array patterns for different

object positions; an object at different locations produces dis-

tinct array patterns. The array patterns, or more precisely the

relative shape of the patterns, can be used to estimate the lo-

cations of the object without the knowledge of its size and

conductivity.

The localization problem can be approached using a gen-

eralized beamforming technique, which means scanning all

possible positions and identifying ones that maximize a like-

lihood function. In recent work [8], we used Capon’s beam-

forming technique for a similar problem of mapping the loca-

tion of a vibrating object in water sensed by an array of under-

water fluid-flow sensors. However, locating multiple objects

with this method requires that their signals be uncorrelated,

which is not possible when all signals are induced by a com-

mon active source. In this work, we propose a new beamform-

ing technique that turns the localization problem into solving

an underdetermined linear system of equations Ax = b with

sparse solutions.

3. SPARSE BEAMFORMING

In this section, we show that the localization problem above

can be solved as an underdetermined linear system of equa-

tions with sparse solutions. Consider a discrete 2D localiza-

tion problem in which we sample the plane on a 2D grid with

N points. For each position of the object on the grid, we com-

pute the expected array pattern (i.e., the vector of voltage dif-

ferences across the array of sensor pairs) using the model in

Fig. 2. Array patterns in simulation of a weakly electrical

sensing system as shown in Figure 1 with 25 sensors, d = 50
mm, s = 8 mm. For each pattern, the object stays 70 mm

away from the array and in front of one specified sensor.

Equation (1). For the n-th point in the grid, we denote the ex-

pected array pattern as a(n) = [a1(n), a2(n), . . . , aK(n)]T ,

where K is the number of sensors in the array. Scanning all

N points on the grid, we form an L×N matrix

A = [a(1),a(2), . . . ,a(N)].

An object located at an unknown point on the grid induces a

pattern b = [b1, b2, . . . , bK ]T . The vector b must be equiva-

lent to some column i in the matrix A. With multiple small

objects that do not significantly distort the overall field, this

problem reduces to solving Ax = b, where x is a length-N
vector with all zero elements except the elements correspond-

ing to the object locations. In most cases, N >> K and the

equation Ax = b is a highly underdetermined linear system

of equations. This system has infinitely many solutions but

under the condition to maximize sparsity of the solution, a

unique solution can be found. Many algorithms have been

proposed to solve this problem [10]. In this paper, we cast

our problem as an �1-minimization problem

min ‖x‖1 , subject to Ax = b,

which can be effectively solved via a linear program [11]. In

the next two sections, we demonstrate the performance of this

beamforming method in simulations and especially in exper-

iments where a vector b of real data is imaged correctly with

a matrix A derived from the idealized theoretical model.

4. SIMULATIONS

To test the idea of sparse beamforming for underwater elec-

trolocation, we simulate a weakly electric sensing system as

shown in Figure 1 with an array of K = 25 sensors. The

distances between sensors are s = 8 (mm) and the distances

from the dipole electrodes to the nearest sensors are d = 50
(mm). All other parameters (such as the dipole charges, the

conductivity of water and of the object, and the radius of the
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Fig. 3. A) Image of mapping an ideal simulated object at x = 125 mm and y = 50 mm. B) Image of mapping an noisy

simulated object at x = 125 mm and y = 50 mm. C) Image of mapping two ideal simulated objects at x1 = 100 mm, y1 = 50

mm and x2 = 150 mm, y2 = 50 mm.

object in Equation (1)) can be combined as a constant gain

factor. This factor will be cancelled out during normalization

of array patterns a(n) so those parameters can take any val-

ues.

The first step is to form a 2-D grid of probing points then

build the matrix A as a dictionary of all array patterns for each

point on the grid. Note that each array pattern is normalized

before forming a column in the matrix A. Next, we select

one array pattern b corresponding to a point of interest on

the grid. This pattern is used as the measurement from the

sensor array to estimate the position of the object. To solve

the �1-minimization problem

min ‖x‖1 , subject to Ax = b,

we use the primal-dual interior-point method from the �1magic
package [12]. Figure 3 shows the results of imaging a single

simulated object located at position x = 125 mm and y = 50
mm. We actually analyze two cases of sensor measurement

with and without noise. For the case of no noise in the sensor

output, Figure 3A displays a single sharp peak exactly at the

original position of the object. In the presence of noise (SNR

≈ 20dB) in sensor outputs, Figure 3B shows a lower peak at

the original position and a few small peaks close to the sensor

array. Furthermore, we also test the capability of the beam-

forming technique to localize multiple sources. Figure 3C

shows two separate peaks corresponding to exact locations of

two simulated objects at x1 = 100 mm, y1 = 50 mm and x2 =

150 mm, y2 = 50 mm.

The simulation results demonstrate the potential of the

sparse beamforming technique. In the next section, we

demonstrate the effectiveness of this technique in an ex-

perimental setting.

5. EXPERIMENT AND RESULTS

5.1. Experiment Setup

A weakly electric sensing system was built according to the

design in Figure 1. Using LEGO components, we set up a

small rack to attach 7 pairs of electrodes serving as 7 sen-

sors. Another pair of electrodes forms a dipole to generate

an electric field. The legs of the 16 electrodes are placed in

a basin of somewhat salty water as shown in Figure 4A. The

distance between the sensors is s = 32 mm. The gap between

the two electrodes of a sensor is 25.4 mm. The distance from

the dipole electrodes to the nearest sensor is d = 50 mm. A

square waveform of 1kHz with magnitude of 5 Volts drives

the dipole to generate an electric field. Those configuration

parameters are used to generate the dictionary matrix A from

the theoretical model as in the simulation (Sec. 4). The only

difference from the simulation is that we measure the real sen-

sors’ outputs when an object is brought near the sensor array.

5.2. Calibration

One challenge of working with a real sensor array is that we

must first figure out the gain of each sensor to calibrate the ar-

ray. For our sensor array, the calibration process is performed

by moving a pair of test electrodes with a fixed spacing and

voltage over each sensor. When the test electrodes move in

front of a sensor, the output of that sensor is recorded and

used to work out the gain of that sensor in the array.

In the model, we assume that the sensors’ legs are sym-

metrical on both sides of the dipole’s axis so that the voltages

across each sensor are perfectly zero. It is not the case for the

real experimental setting. In fact, we first carefully tune each

sensor to get the lowest possible output voltage before putting

an object in and recording the perturbations.
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Fig. 4. A) Experimental setup. B) Image of successfully mapping a plastic ball at about 45 mm in front of Sensor 5. C) Image

of mapping simultaneously two plastic ball objects at about 45 mm in range and between Sensors 1 & 2 and Sensors 5 & 6.

5.3. Single Object Mapping

In this experiment, we put a nonconductive plastic ball into

the space in front of the sensor array. We recorded the sensor

outputs for several positions in front of some sensors or in the

gap between them. Figure 4B shows the results of mapping

the location of the ball when it lies about 45 to 50 mm in front

of Sensor 5. In those plots, we can clearly see one large peak

very close to the expected location of the ball.

5.4. Multiple Objects Mapping

We then tested our sparse beamforming technique for multi-

ple sources. Note that signals from multiple sources in the

weakly electric sensing system are highly correlated as they

are induced from the same dipole source, so conventional

beamforming techniques do not work for this case. In the ex-

periment, we put 2 similar plastic balls in 2 positions roughly

between sensors 1 and 2 and between sensors 5 and 6. Both

balls were at a range of about 45 to 50 mm away from the sen-

sor array. The results displayed in Figure 4 clearly show that

we can separate two sources and map the locations accurately.

6. CONCLUSION

Two contributions are made in this paper. We present the first

weakly electric field sensing system with the ability of imag-

ing surrounding objects in the near field. We also provide

a new sparse beamforming technique that can overcome the

challenge of separating correlated multiple sources. This has

potential to spur future research into customizing the �1 min-

imization algorithm for beamforming applications.
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