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Abstract. An approach for blind adaptive wideband beam-
forming is proposed based on a uniform circular array. The re-
ceived array signals are first transformed into different phase modes
and each phase mode output is then processed by a filter to achieve
a frequency independent response. As a result, a set of instanta-
neous mixtures of the original source signals is obtained and the
original wideband beamforming problem can be readily solved us-
ing the standard instantaneous BSS algorithms and the original
source signals can be recovered one by one or simultaneously, de-
pending on the specific requirement.

Keywords. blind beamforming, circular arrays, wideband,
complexity

1. INTRODUCTION

Beamforming has found many applications in various areas rang-
ing from sonar and radar to wireless communications [1]. For
wideband signals, it is usually achieved by the use of tapped delay-
lines (TDLs) or FIR/IIR filters in its discrete form, which can form
a frequency dependent response for each of the received wideband
sensor signals to compensate the phase difference for different fre-
quency components. To perform adaptive beamforming with high
interference rejection and resolution, we need to employ a large
number of sensors and long TDLs or FIR/IIR filters, which leads to
a large number of adaptive coefficients and unavoidably increases
the computational complexity of its adaptive part and slows down
the convergence of the system. To alleviate this problem, many
methods have been proposed, such as the subband adaptive and
beamspace adaptive beamformers [2, 3].

In this paper, we will focus on the class of uniform circular
arrays (UCAs) and propose a novel approach for wideband adap-
tive beamforming with a significantly reduced number of adaptive
coefficients. Compared to uniform linear arrays, uniform circular
arrays can achieve uniform resolution at the azimuth angle over
the full range of 360◦ [4, 5, 6, 7, 8]. In the proposed scheme,
the received array signals are first transformed into different phase
modes and each phase mode output is then processed by a fil-
ter to compensate the frequency dependent terms. As a result, a
set of instantaneous mixtures of the original source signals is ob-
tained and the original wideband beamforming problem is trans-
formed into an instantaneous blind source separation (BSS) prob-
lem [9, 10, 11]. This BSS problem can be readily solved using the
standard instantaneous BSS algorithms and the original source sig-
nals can be recovered one by one or simultaneously, depending on
the specific requirement. This is done without estimating the di-
rection of arrival (DOA) angle of the signal of interest. Therefore

φ
d 1

m

θ

signalz

y

x m

φrM−1

0

Figure 1: A uniform circular array with M sensors and a circum-
ferential sensor spacing d and a radius r, where a signal impinges
from the direction (θ, φ).

it can be considered as a blind wideband beamforming scheme
to differentiate it from the traditional adaptive beamforming ap-
proaches.

This paper is organised as follows. The proposed beamform-
ing scheme is introduced in Section 2, followed by simulations in
Section 3; conclusions are drawn in Section 4.

2. PROPOSED WIDEBAND ADAPTIVE BEAMFORMING
SCHEME FOR CIRCULAR ARRAYS

Consider the uniform circular array with M omnidirectional sen-
sors and a circumferential sensor spacing of d, as shown in Figure
1, with its radius r = Md

2π
. The position of the m − th sensor is

given by (r cos φm, r sin φm, 0), m = 0, 1, . . . , M − 1, where
φm = m 2π

M
is the angle measured from the x axis to the m − th

sensor. The sensor spacing d is α/2 times the wavelength λmin

of the highest frequency component of the impinging signal, i.e.
d = αλmin

2
, then we have

r = α
λmin

2

M

2π
= αβ

λmin

2
, (1)

where β = M
2π

.

For a signal with an angular frequency ω, the phase difference
between the center of the circular array and the m − th sensor is
given by

Φ = αβ
ωλmin

2c
sin θ cos(φ − φm) , (2)

where c is propagation speed of the signal.
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Figure 2: Processing of the received array signals for the k − th
phase mode by the weight vector wk and the following filter hk(t),
with x̂k(t) and x̃k(t) as the respective outputs.

In the discrete form, if we sample the signal at the Nyquest
rate, i.e. the sampling period Ts = λmin

2c
, then we have ωλmin

2c
=

Ω, where Ω = ωTs is the normalised angular frequency of the
signal. Without loss of generality, we assume the signals arrive
from the (x, y) plane, i.e. θ = π

2
. Then the m− th element of the

steering vector d(θ, φ, Ω) of this uniform circular array is given
by

dm = ejαβΩ cos(φ−φm) , (3)

which can be expanded to the following form [12]

dm =

+∞X
n=−∞

jnJn(αβΩ)ejn(φ−φm) , (4)

where Jn is the Bessel function of the first kind.
Applying a normalised weight vector wk to the received array

signals xm(t), m = 0, 1, . . . , M − 1, as shown in Figure 2, we
obtain the output x̂k(t), given by

x̂k(t) = wH
k x(t) , (5)

where

wk =
1

M
[ejkφ0 ejkφ1 · · · ejkφM−1 ]H

x(t) = [x0(t) x1(t) · · · xM−1(t)]
T . (6)

The response of this beamformer with the weight vector wk is
given by [4, 6]

Pk(φ, Ω) = wH
k d(φ, Ω)

= jkJk(αβΩ)ejkφ +
X

n=k+lM

jnJn(αβΩ)ejnφ ,

(7)

where l is a non-zero integer (l ∈ Z but l �= 0).
The higher-order components in Equation (7) can be ignored

if the absolute value of k does not exceed some threshold K. In
this case, Pk(φ, Ω) can be approximated by

Pk(φ, Ω) ≈ jkJk(αβΩ)ejkφ
(8)

for |k| ≤ K. According to [4, 6], for each frequency Ω, we can
choose

K(Ω) ≈ αβΩ (9)
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Figure 3: The 2K + 1 processing blocks with outputs x̃k(t),
k = −K, . . . ,−1, 0, 1, . . . , K , followed by an instantaneous BSS
algorithm to recover the source signals.

and

K(Ω) <
M

2
, (10)

where K(Ω) means the value of K is dependent on Ω.
To meet both conditions, the limit is to choose the circum-

ferential sensor spacing d to be half the wavelength of the cor-
responding frequency Ω. For wideband signals with a frequency
range Ω ∈ [Ωmin; Ωmax], we will choose d = λmin

2
, i.e. α = 1

and K ≈ βΩmin.
Note the beam pattern in Equation (8) is frequency dependent.

In order to achieve a frequency independent response, we further
process the output x̂k(t) of the k−th phase mode by a filter hk(t),
which has a frequency response Hk(Ω) = 1

jkJk(αβΩ)
and its out-

put is given by

x̃k(t) = hk(t) ∗ x̂k(t) = hk(t) ∗ (wH
k x(t)) , (11)

where ∗ denotes the convolution operation. The beam response
with the weight vector wk and the filter hk(t) can be expressed as

P̂k(φ) = ejkφ
(12)

Suppose we have L impinging plane-wave signals sl(t) from

the azimuth angle φ̂l, l = 0, . . . , L − 1, respectively. All of them
are bandlimited to the range Ω ∈ [Ωmin; Ωmax]. Then after the
processing shown in Figure 2, the output x̃k(t) can be expressed
as

x̃k(t) =

L−1X
l=0

ejkφ̂lsl(t) = aT
k s(t) , (13)

where

ak =
h
ejkφ̂0 ejkφ̂1 , · · · , ejkφ̂L−1

iT

s(t) = [s0(t) s1(t) · · · sL−1(t)]
T . (14)

Clearly, after the processing of wk and hk(t), its output x̃k(t)
becomes a simple weighted sum of the L wideband source signals.

If we set up 2K + 1 such processing blocks with a weight
vector wk and the corresponding filter hk(t), k = −K, . . . ,−1,
0, 1, . . . , K , as shown in Figure 3, their outputs x̃k(t), k = −K,
. . . ,−1, 0, 1, . . . , K , can be expressed in a vector form as follows

x̃(t) = AT s(t) , (15)

where

x̃(t) = [x̃−K(t) · · · x̃−1(t) x̃0(t) x̃1(t) · · · x̃K(t)]T

A = [a−K · · · a−1 a0 a1 · · · aK ] . (16)
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Since the matrix A is independent of signal frequency and its

entries are of a constant value for fixed signal arrival angles φ̂l,
l = 0, . . . , L− 1, Equation (15) now represents a classical instan-
taneous mixing problem in the well-known blind source separation
area [10], and we can recover the L source signals blindly from
the mixtures x̃(t) without estimating their arrival angles or know-
ing the mixing matrix A. This can be achieved by employing the
standard instantaneous BSS algorithms, such as those employing
second-order statistics or higher-order statistics [10], as shown in
Figure 3, where D is the demixing matrix and should be an in-
verse of the mixing matrix A up to some scaling and permutation
for 2K + 1 ≥ L after the source signals are successfully recov-
ered/separated. Since the proposed scheme does not need the DOA
(direction of arrival) information of the source signals, it can be
considered as a blind wideband beamforming approach [11].

Many instantaneous BSS algorithms can be applied to the mix-
tures x̃(t) to recover the source signals and here we only consider
a simple example to illustrate the proposed blind beamforming
scheme. Suppose the source signals are independent of each other
and at most one of them is Gaussian. Then a higher-order statis-
tics based instantaneous BSS algorithm can be applied here. In
the simulations part, we will use a normalised kurtosis based blind
source extraction (BSE) algorithm to extract one of source sig-
nals [10], instead of recovering all of the L source signals simulta-
neously in one single step. The update equation for this algorithm
is given by

dl[n + 1] = dl[n] + μφ(ŝl[n])x̃[n] , (17)

where dl[n] is the extraction vector applied to the mixtures x̃,
ŝl[n] = dT

l [n]x̃[n] is the extracted source signal, and

φ(ŝl[n]) = β
m4(ŝl)

m2(ŝl)3

»
m2(ŝl)

m4(ŝl)
ŝ3

l [n] − ŝl[n]

–
(18)

with

mq(ŝl)[n] = (1−λ)mq(ŝl)[n−1]+λ|ŝl[n]|q, q = 2, 4 . (19)

λ is the forgetting factor and β = 1 for the extraction of source
signals with positive kurtosis and −1 for sources with negative
kurtosis.

The proposed approach has an advantage that it simplifies the
adaptive beamforming process for wideband signals greatly, since
there is no need to estimate the DOA angle of the signal of interest
and the length 2K +1 of the adaptive demixing vector di is much
shorter than the length of the adaptive coefficients in the traditional
TDL-based direct beamforming approaches.

3. SIMULATIONS

The simulations are based on a UCA with 10 sensors and the cir-
cumferential adjacent sensor spacing d is chosen to be half wave-
length corresponding to the highest frequency α = 1. There
are three source signals, two of which are non-Gaussian and the
other one is Gaussian. Their normalised kurtosis values are −1.38,
−0.32, and −0.04, respectively. They arrive at the array from

three different directions φ̂ = 0◦, −80◦ and 110◦, and have been
pre-filtered and bandlimited to the range Ω ∈ [0.5π; π]. Accord-
ing to [10], when we apply the algorithm (β = −1) in (17) to the
processed signals x̃(t), the one with the minimum kurtosis value
−1.38 (the first one with the DOA angle 0◦) will be extracted. We
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Figure 4: Learning curve of the proposed method using the algo-
rithm in (17).
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Figure 5: Learning curve of the generalised sidelobe canceller
based on the same uniform linear array.

can assume that the first signal is the signal of interest and the other
two are interfering signals. The signal to interference ratio (SIR)
is about 0 dB and the signal to noise ratio (SNR) is about 20 dB.

With β = M
2π

= 5
π

, we have

K ≈ βΩmin =
5

π
× 0.5π = 2.5 ≈ 2 . (20)

Therefore in total we can have 2× 2+1 = 5 phase mode outputs.
However, we will only choose the three phase modes k = −2, 0, 2
in our simulation. Each of the filter hk(t) is designed according
to the requirement Hk(Ω) = 1

jkJk(αβΩ)
and realised by a 128-

tap FIR filter. The reason for ignoring the modes k = −1, 1 is
that for these two modes, there is a point with zero response value
for Jk(αβΩ) in the frequency range Ω ∈ [0.5π; π], which will
lead to an unstable filter after the inversion. This is a limitation for
the proposed approach and one solution is to employ multiple-ring
circular arrays [7, 8].

The learning curve of the BSE algorithm in Equation (17) is
shown in Fig. 4, with μ = 0.001 and λ = 0.03. The ensemble
mean square error is the one between the extracted signal and the
first source signal averaged over 1000 runs. As a reference, we
also show the learning curve of a generalised sidelobe canceller
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Figure 6: The resultant beam pattern of the proposed method for
the frequency range Ω ∈ [0.5π; π].

(GSC) [13, 14] in Fig. 5 based on the same structure, using a nor-
malised LMS adaptive algorithm with a step size of 0.03 [15]. In
the GSC, the TDL length is 128 and total number of adaptive co-
efficients is (10 − 1) ∗ 128 = 1152. Note that the GSC needs
the DOA information of the signal of interest to design the linear
constraints, while the proposed method works without any such in-
formation. So these two curves are not directly comparable. How-
ever, at least we can see that the proposed method can achieve a
very fast convergence speed due to the very small number of adap-
tive coefficients involved, which is only 3 in this case since we
only have three phase mode outputs and much smaller than 1152
of the GSC. Moreover, the steady state error of the GSC is higher
than the proposed approach. To reduce the steady state error, we
can have a smaller step size for the normalised LMS algorithm,
but this means that the convergence speed of the GSC will be even
slower compared to the proposed method. The resultant beam pat-
tern for the proposed method is shown in Fig. 6, where the null
at the interference direction 110◦ is clearly visible. For the direc-
tion −80◦, although the null is not as clear as the one at 110◦, the
attenuation is about 20 dB.

4. CONCLUSIONS

A novel approach has been proposed for adaptive wideband beam-
forming with a significantly reduced number of adaptive coeffi-
cients. This approach is based on a uniform circular array and
achieved by first transforming the received array signals into dif-
ferent phase modes and then processed by a filter to compensate
the frequency dependence of the response. As a result, a set of in-
stantaneous mixtures of the original source signals is obtained and
the original wideband beamforming problem is transformed into
an instantaneous BSS problem, which can be readily solved using
the standard instantaneous BSS algorithms. Since no DOA infor-
mation is required for the proposed scheme, it can be considered as
a blind wideband beamforming approach. Simulation results have
shown that it can successfully extract the signal of interest.
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