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ABSTRACT

This paper considers adaptive jammer rejection algorithms

applicable to wideband stretch-processed systems. Specifi-

cally, sub-banding algorithms in which the received data is

first pre-processed into narrow frequency bins are studied. In

conventional sub-band STAP, the received signal is divided

into narrowband frequency bins, following which the interfer-

ence is adaptively rejected in each bin. This usually requires

that a different weight vector be computed for each sub-band.

Alternatively, the received data can be pre-processed so that

every sub-band is shifted to a common central sub-band. This

enables computation of a single weight vector that can be ap-

plied to all of the shifted sub-bands. Simulation results are

presented to assess the behavior and performance of these al-

gorithms.

Index Terms— STAP, Adaptive beamforming, Stretch

radar

1. INTRODUCTION

In order to create a high resolution target range profile, a digi-

tal array radar must employ a waveform with wide bandwidth.

This in turn implies that the radar receiver must be capable of

processing the wideband return signal.

Wideband system operation presents several challenges.

Because of the wide waveform bandwidth, high-speed analog-

to-digital converters (ADCs) are required to sample the return

signal. However, the dynamic range and speed of an ADC

are competing requirements. The reduced dynamic range of

a high speed ADC will thus limit the ability of the system to

perform in high clutter environments such as littoral regions.

Another challenge of wideband systems is the ability to op-

erate in the presence of co-channel interference/jamming.

The wide bandwidth return waveforms introduce dispersion

across the array, and thus the adaptive signal processing

methods must be modified to combat this effect.

In order to address the problems associated with high-

speed ADCs, stretch processing [1] may be employed. In

stretch processing, the transmit waveform is a conventional

wideband linear frequency modulated (LFM) waveform.

However, the received wideband LFM waveform is mixed

with an LFM waveform having the same slope as that of

the transmit signal. After bandpass filtering, a tone whose

frequency is proportional to the target range results. By se-

lecting a band of frequencies (which thus corresponds to a

range window) to digitize, rather than entire RF bandwidth,

usage of a much lower-speed ADC is possible.

Even with stretch processing, dispersive effects due to

the wide waveform bandwidth will be present. One popular

method to contend with wideband processing is the sub-band

approach [2], [3]. That is, the receive signal is divided into

many sub-bands in frequency, each of which is approximately

narrowband. Conventional narrowband processing can then

be applied to each sub-band.

This paper is organized as follows: Section 2 formulates

the sub-band algorithms for stretch processed systems and de-

scribes their application. Section 3 presents and discusses the

simulation examples of the these algorithms.

2. DEVELOPMENT

2.1. Stretch Processing

Consider a transmitted waveform sTX(t) and a “local oscil-

lator” waveform sLO(t), both of which are LFM waveforms

with identical chirp rate k and finite duration T . These wave-

forms may be expressed as

sTX (t) = cos
[
2π

(
k

2
t2 + f

(i)
TXt

)]

sLO (t) = cos
[
2π

(
k

2
t2 + f

(i)
LOt

)]

where f
(i)
TX and f

(i)
LO are the respective initial frequencies. The

received signal from a target can be expressed as sTX(t− τ)
for some delay τ . Mixing sTX(t− τ) with the “local oscilla-

tor” waveform sLO(t) and bandpass filtering results in a tone

with frequency

kτ +
(
f

(i)
LO − f

(i)
TX

)
. (1)

The above sequence of operations is known as stretch pro-

cessing. It can be seen from (1) that stretch processing results

in a tone whose frequency is proportional to the target range.

The bandpass filter that follows the mixing with sLO(t) is

centered at f
(i)
LO − f

(i)
TX . The selected width of this filter cor-

responds to the target range window that is selected based
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upon the range of interest and ADC capabilities. Thus, stretch

processing accommodates wideband waveforms without the

need for high-speed ADCs by confining the target range of

interest to a relatively narrow frequency band.

2.2. Formulation

Consider a signal with frequency f arriving at angle θ on an

N -element uniform linear array with inter-element spacing d.

The array response vector can be expressed as

v (θ, f) =
[

v1 (θ, f) . . . vN (θ, f)
]T

(2)

where

vn (θ, f) = e−j 2πd
c (n−1)f sin θ, n = 1 . . . N (3)

and c denotes the speed of light.

Following the development in [4], the kth Fourier series

coefficient of (3) can be written as

ck =
1
2π

+π∫
−π

e−j[ 2πd
c (n−1)f sin θ−kθ]dθ

= Jk

(
2πd

c
(n− 1) f

)
(4)

where Jk(·) denotes the order k Bessel function of the first

kind. Thus,

vn (θ, f) =
+∞∑

k=−∞
Jk

(
2πd

c
(n− 1) f

)
e−jkθ

=
+∞∑
k=0

Jk

(
2πd

c
(n− 1) f

)
ρk (θ) (5)

where

ρk (θ) =
{

1 k = 0
e−jkθ + (−1)ke+jkθ k ≥ 1 (6)

As such, the array response vector using a K term Fourier

expansion can be expressed as

v (θ, f) ≈ J (f) ρ (θ) (7)

where

[J (f)]nk = Jk−1

(
2πd

c
(n− 1) f

)

[ρ (θ)]k = ρk (θ) (8)

for n = 1 . . . N and k = 1 . . . K. This technique will be

termed as angle-frequency decoupling (AFD).
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Fig. 1. Narrowband adaptive beamforming architecture.
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Fig. 2. Conventional sub-band STAP architecture.
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Fig. 3. AFD sub-band STAP architecture.

2.3. Adaptive Architectures

Various adaptive architectures are depicted in Figures 1-3.

Figure 1 shows the ABF architecture for narrowband sig-

nals. I/Q samples from each channel are used to form an adap-

tive weight vector (computed using e.g. the SMI method [5])

which is then applied to the data in order to reject interfer-

ence. Note that because of the usage of stretch processing, an

FFT is applied at the beamformer output to obtain the target

range profile.

As previously discussed, the frequency dependence of the

array response vector will manifest itself in the form of dis-

persive effects at wide bandwidths. This will lead to a degra-

dation in the performance of the architecture in Figure 1, since

adaptivity is present only in the spatial dimension. The addi-

tion of adaptivity in the temporal dimension as well results

in a space-time adaptive processor (STAP) that can mitigate

dispersive effects. In the sub-band STAP architecture shown

in Figure 2, the I/Q data from each channel is first divided to

into multiple narrow sub-bands. The sub-bands correspond-

ing to the same frequency bin are grouped so that narrowband

ABF may be applied to each bin.

Figure 3 shows the sub-band STAP architecture modified

to use AFD. It can be seen from Figures 1-3 that the AFD

sub-band STAP architecture is essentially a hybrid of the nar-

rowband ABF and conventional sub-band STAP architecture;

the I/Q data from all channels is shifted to a common sub-

band, following which a a single weight vector is computed.
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One important advantage of stretch processing is that the

sub-banding procedure is essentially free from a computa-

tional standpoint. In a conventional matched filter system, a

filter bank would be necessary to divide the received data into

sub-bands. With stretch processing, a natural time-frequency

mapping exists, since time cells correspond to frequency bins.

Thus, sub-banded data can be generated by simply group-

ing time-domain samples according to the desired sub-band

width.

2.4. Application

Consider a wide bandwidth that is subdivided into M nar-

rowband bins. To map an array response at frequency fm,

m = 1 . . . M to a center frequency f0, a transformation ma-

trix Tm can be obtained as the solution to the least-squares

optimization problem

arg min
Tm

‖TmJ (fm)− J (f0)‖22 (9)

The solution is given by

Tm = J (f0)J# (fm) (10)

where # denotes the Moore-Penrose pseudo-inverse. It

should be noted, however, that unless TmTH
m = I, that

is, Tm is a unitary matrix, the noise statistics will change

and result in noise inflation. In order to keep the noise un-

correlated, the optimization problem in (9) can be modified

to include the constraint that Tm be a unitary matrix. This

problem is known as the Orthonormal Procrustes Problem,

and the solution is given by

Tm = VmUH
m (11)

where Vm and Um are matrices of the right and left singular

vectors of the matrix

J (fm)JH (f0) = UmΣmVH
m

In summary, the AFD algorithm proceeds as follows:

1. Sub-band the sampled data x(t) into M frequency sub-

bands, each of which is approximately narrowband, re-

sulting is the sub-banded data xm(t), m = 1 . . . M .

2. Form the transformation matrix Tm, m = 1 . . . M , for

each sub-band m.

3. Compute the adaptive weight vector using the shifted

sub-banded data vectors Tmxm(t), m = 1 . . . M .

4. Apply the adaptive weight vector to each shifted sub-

band.

3. SIMULATION RESULTS AND DISCUSSION

A simulation is performed to assess the performance of the

architectures discussed in Section 2.3. For all simulations, a

20 element array with half-wavelength spacing at 480 MHz is

assumed. Stretch processing is performed using a 100 MHz

bandwidth LFM waveform that spans an RF range of 430

MHz to 530 MHz. The IF filter bandwidth is set at 10 MHz,

and a 0 dB SNR target incident from 50◦ (0◦ is broadside) is

assumed.

In Figures 4-7, a 20 dB JNR jammer is assumed incident

from 45◦. Figures 4-6 show the narrowband ABF, conven-

tional sub-band STAP, and AFD sub-band STAP beampattern.

The frequency dispersion in the narrowband adaptive beam-

forming beampattern in Figure 4 is evident. Figures 5 and

6 both show that the usage of STAP enables maintaining a

null in the jammer direction while keeping the mainbeam on

the target for the entire RF bandwidth. Figure 7 shows the

resulting target range profile using the different processing

architectures. Due to the dispersive null, narrowband ABF

results in very weak peak, while both conventional and AFD

sub-band STAP result in a pronounced detection.

Figure 8 shows the SINR as the jammer angle is varied.

Again, it is apparent that narrowband ABF suffers from dis-

persive effects, while conventional and AFD sub-band STAP

result in much higher SINR levels. An alternate view of this is

presented in Figure 9, wherein the level of the target peak for

conventional and AFD sub-band STAP has been normalized

to 0 dB. It is apparent that AFD sub-band STAP has much

improved sidelobe levels compared to conventional sub-band

STAP. As noted in [2], conventional sub-band STAP suffers

from elevated range sidelobes due to the fluctuation in the re-

sponse of the adaptive weight vector from one sub-band to

another. This phenomena is mitigated by the fact that AFD

sub-band STAP computes only a single adaptive weight vec-

tor.

θ (Deg)

Fr
eq

ue
nc

y 
(M

H
z)

ABF Pattern

35 40 45 50 55 60

440

450

460

470

480

490

500

510

520

530

−30

−25

−20

−15

−10

−5

0

Fig. 4. Narrowband adaptive beamforming beampattern.
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Fig. 5. Conventional sub-band STAP beampattern.

θ (Deg)

Fr
eq

ue
nc

y 
(M

H
z)

AFD Sub−band STAP Pattern

35 40 45 50 55 60

440

450

460

470

480

490

500

510

520

530

−30

−25

−20

−15

−10

−5

0

Fig. 6. AFD sub-band STAP beampattern.
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Fig. 7. Target range profile.

30 35 40 45 50 55 60 65 70
−15

−10

−5

0

5

10

15

Jammer angle θj (Deg)

SI
N

R
 (d

B
)

Narrowband Adaptive Beamforming
Conventional Sub−band STAP
AFD Sub−band STAP

Fig. 8. SINR as a function of jammer angle.
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Fig. 9. Comparison of range sidelobe levels.

4. CONCLUSION

Stretch processed systems offer a means of achieving wide

system bandwidth without the need for high-speed ADCs.

Nonetheless, dispersive effects due to bandwidth still persist,

and necessitate the application of STAP in order to maintain a

jammer null and target mainbeam over wide bandwidths. The

conventional sub-band STAP architecture partitions the data

in narrow sub-bands and computes an adaptive weight vector

for each sub-band. AFD sub-band STAP takes advantage of

the decoupling of the angle and frequency components of the

array response vector that is possible using a Bessel function

series expansion. This decoupling allows the sub-bands to be

focused to a common center sub-band, following which only

a single adaptive weight vector need be computed. Simulation

results verify the efficacy of AFD sub-band STAP and show

that it can offer improved performance over conventional sub-

band STAP.
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