
NOVEL APPROACHES TO PARALLEL H.264 DECODER  
ON SYMMETRIC MULTICORE SYSTEMS 

Kue-Hwan Sihn*, Hyunki Baik*, Jong-Tae Kim*, Sehyun Bae**, Hyo Jung Song*

*Software Lab., SAIT, Samsung Electronics        **Visual Display Division, Samsung Electronics 

ABSTRACT 

Novel approaches to parallel H.264 decoder for symmetric 
multicore processors are presented. The basic partitioning of the 
decoder is coarse-grained and hybrid method of the data 
partitioning and functional partitioning. We investigate the 
performance bottleneck of the parallelized decoder, and propose 
two new approaches, software memory throttling and fair load 
balancing. The software memory throttling limits the number of 
cores involved in the parallel motion compensation to achieve 
better speedup and power-saving. The fair load balancing for 
deblocking filter reduces load imbalance caused by the 
conventional static partitioning method.  From the evaluation on 
two different symmetric multicore platforms, proposed approaches 
show up to 24% of speedup when there is much bandwidth 
contention.

Index Terms— multicore, H.264, parallel processing, 
memory bandwidth

1. INTRODUCTION 

Recently, multicore processors became the main stream and will 
continue to expand their application area, which includes 
multimedia processing. H.264/AVC is now widely accepted codec 
but notorious for its complexity and internal dependency when 
considering parallelization on multicore processors. Several 
reasons such as internal dependency and frequent synchronization 
in intra predictions (IP), variable length decoding (VLD), and 
deblocking filter, make it more difficult to parallelize H.264 
decoder. Although multicore processors claim the high 
performance at low power consumption, they can suffer from 
shared hardware resources like on-chip shared cache and off-chip 
memory bandwidth. H.264 decoder tends to require much memory 
bandwidth and it limits the speedup on the multicore processors. 

In the multicore era, it is required a new approach to the 
parallelization of multimedia application like H.264 decoder. In 
this paper, we design and implement a parallel H.264 decoder that 
can work on two different platforms, and analyze the major 
bottlenecks of the parallelization, and propose new approaches to 
overcome them.

First, we build a state-of-the-art parallel H.264 decoder for the 
symmetric multicore processors like Intel Core2Quad and ARM 
MPCore processor. Coarse grained partitioning and the most recent 
parallelization techniques are applied to find the further bottleneck 
of the performance. 

Second, we propose a bandwidth-saving technique when 
parallel motion compensation (MC) is being processed. Our 
approach monitors dynamic status of the overlapping of VLD and 

MC and limits the allocated bandwidth of MC if VLD slowdown is 
observed. 

Third, we propose the fair partitioning algorithm for 
deblocking filter to mitigate load imbalance, which is found in 
coarse-grained parallel deblocking filter. In the recent coarse-
grained parallel deblocking filter, workload is spatially partitioned 
and statically assigned to the processors [1], but if the computation 
time of the deblocking filter is not equally distributed, load 
imbalance can arise. 

2. RELATED WORK 

Parallelization of H.264 decoder on multicore processors has been 
popular because it requires a large amount of computation power. 
The approaches can be coarsely categorized by job partitioning 
granularity.  

Macroblock (MB) level parallelization methods are fine-
grained ones and provide better load balancing. Tol et al. proposed 
MB-level parallelization based on wavefront method after 
completing the VLD function [2]. This fine-grain parallelization 
technique divides MBs and assigns whole MBs to each core, after 
the dependency is resolved. This provides good load balancing, but 
the frequent synchronization can create much overhead.  

 Another MB level parallelization [3] is proposed for efficient 
partitioning of MBs for frames that have sparse dependencies. It 
builds the weighted dependency graph with expected complexity 
and dependency for each MB, and assigns MBs to each core by 
using dynamic level scheduling (DLS) algorithm. This algorithm 
can put extra partitioning overhead, because every time the 
scheduling graph and partitioning have to be calculated during the 
run-time. 

When considering synchronization cost and relatively small 
number of cores, coarse-grained partitioning method [4, 5] is 
preferable if we can reduce the load imbalance in the parallel 
decoder system. 

Our basic parallel decoder is based on coarse-grained 
partitioning and has some optimization features over [5]. This 
partitioning method employs data partitioning for MC, IP, and 
deblocking filter (Deblock), and also adopts functional partitioning 
between VLD and other stages (MC, IP, Delock).

3. BASIC PARALLELIZATION 

The basic parallelization of H.264 decoder is focused on running 
efficiently on various symmetric multiprocessor (SMP) platforms. 
The base single-core decoder is from ffmpeg [6] and supports 
baseline profile. The resulting parallel H.264 decoder can run on 
Intel Core2Quad and ARM 11 MPCore system, and can decode 

2017978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



variable size input streams including QCIF, CIF, SD and HD 
resolution.

3.1. Overall Pipeline Structure 

We apply the hybrid approach that combines both data partitioning 
and overlapping decoding functions.   

The H.264 decoding process includes the following functions: 
VLD, MC, IP, Inverse Quantization/Inverse Transformation 
(IQ/IT) and deblocking filter. IQ/IT is always performed together 
with either MC or IP. From now on, MC means MC/IQ/IT and IP 
means IP/IQ/IT for simplicity.  

Data partitioning provides a good load balancing and easily 
supports various number of cores, however, applying it for all 
decoding functions is difficult except MC function due to the data 
dependencies. In particular, VLD requires sequential execution 
which is dependent on previous context, it is difficult to parallelize. 
MC, IP, Deblock functions employ data partitioning technique for 
multiple cores, details are shown in next section.  

Even if VLD function is not finished when Deblock function is 
completed, MC function, which is the next function of VLD, is 
executed to reduce the idle time. It is possible because MC 
function does not have any data dependency between MBs in a 
frame. We call it as the VLD-MC overlapping. Fig. 1 shows the 
timeline when both VLD-MC and VLD-Deblock overlapping 
applied.

VLD

Deblock (-1)

Deblock (-1)

Deblock (-1)

MC

MC

MC

IPMC

IP

IP

IP

VLD-Deblock Overlap +  VLD-MC Overlap

Deblock (-1) means the processing of the previous frame

Fig. 1 Overall Pipeline Structure 

3.2. Data Parallelism 

When VLD function finishes execution for a MB, it fills the 
decoded MB context structure where stores the information used 
by MC, IP and Deblock functions, and then these three functions 
access required parameters in this context and run in data-parallel 
manners, which are different from each other. 

First, MC function can be executed with no dependency 
synchronization because it does not depend on the neighboring 
MBs. To support the VLD-MC overlapping, VLD and MC share 
the one MB context queue (shortly, MB queue) and behave like 
producer-consumer model. When there are sufficient entries in the 
MB queue, cores for MC fetch the job as much as specified 
quantum size. This usually happen after VLD processing is over. 
However, if there are not sufficient MB queue entries, a core for 
MC fetches all the remaining MB queue entries to get rid of idle 
time of MC cores. This aggressive fetching helps the performance 
for many cases, but sometimes it can slow down VLD processing, 
which will be discussed in a later section.  

Second, data partitioning for IP is not trivial because a decoded 
MB has dependencies on top, top-left and left neighboring MBs, 

the decoder has to keep the sequence of processing according to 
the spatial dependency of IP blocks. Usually, inter frames have 
less dependencies than intra frames and it is possible to partition 
the frame in order to have less dependencies [3]. However, this 
partitioning requires a lot of computation time and is not suitable 
for the symmetric multicore processor from our experiment,  thus, 
wavefront data partitioning [5] is used both for intra frame and 
inter frame in our implementation. To reduce the synchronization 
cost, our decoder switches to the single-core processing if the 
synchronization cost in the inter frame which has very sparsely 
located intra prediction blocks excesses the benefit of parallel IP 
processing. This usually happens because the time needed by IP 
processing is very small in a inter frame. 

Third, we applied coarse-grained data partitioning for 
deblocking filter [1], because fine-grained partitioning of 
deblocking filter incurs the inherent synchronization overhead 
problem of wavefront data partitioning. In this method, post-
processing has to be done after parallel filtering for the 
contaminated boundary area. However, statically partitioned 
workload can cause load imbalance between cores because the 
characteristics of the frame differ from frame to frame. A new 
approach to cope with the load imbalance in the deblocking filer 
will be discussed in a later section. 

4. BOTTLENECKS AND APPROACHES 

4.1 Identifying Bottlenecks 

4.1.1. Limited Off-Chip Memory Bandwidth 

Sometimes, a parallelized application performs worse when 
working on a multicore processor than on a single-core processor 
because of the insufficient shared resources such as last-level 
shared caches and off-chip memory bandwidth. Moreover, despite 
the slowdown, the cores involved in multicore version consume 
more power than in single-core version. 

Fig. 2 shows a typical example of performance degradation 
along with core numbers on Intel quadcore processor. Our basic 
parallel decoder shows gradual speedup along with core numbers 
for the CIF-size stream, but for the SD-size streams, the slowdown 
is observed on an Intel quadcore processor system. The cache 
interference appeared to be relatively low from the cache analysis 
with the memory traces. We found that the multiple MC threads 
which have dependency on VLD occupy much off-chip memory 
bandwidth and can cause VLD's slowdown for some input streams.  
The slowdown of VLD affects the overall performance. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1core 2core 3core 4core

ARM MPCore
Intel Quadcore

Fig. 2  Performance Degradation on a SD-size Stream 

2018



4.1.2. Load Imbalance 

Since MC and IP functions which employ dynamic load 
balancing with small data partitions in a frame, the load is 
relatively well balanced. In Deblock function, however, load 
imbalance can arise more frequently because each core is assigned 
one large, statically partitioned workload from a frame. 

In spite of the same partition size, which is assigned to each 
core, load imbalance can arise due to the characteristic of input 
data in Deblock function.

4.2 Software Memory Throttling for Parallel MCs 

VLD (core 0)

MC (core 1)

MC (core 2)

MC (core 3)

MB Queue

Memory

Access

Queue Length Monitor

Control Number of Cores
for MC

Time

Queue
Length

U-Limit

L-Limit

Inc(MC Cores)

Dec(MC Cores)

Fig. 3  Software Memory Throttling Mechanism 

Since the term memory throttling in hardware domain is used to 
cool down memory system and has different purpose than our 
technique, we call our method software memory throttling to 
differentiate from hardware method. Software memory throttling 
method controls the activity of bandwidth-consuming threads, so 
that the higher priority thread can get more chances to access 
memory. For example, it is desirable to assign more bandwidth to 
VLD when VLD and multiple MCs are running concurrently in 
our parallel H.264 decoder, especially if VLD suffers from 
insufficient memory bandwidth. 

The software memory throttling technique can be applied to 
any producer-consumer style application running on multicore 
processor. This technique inspects the shared queue between a 
producer and consumers and limits the active producers in order to 
achieve better performance and power saving. The overall 
mechanism of the software memory throttling is illustrated in Fig. 
3.

When consumer (MC) side tries to process few items with 
many cores, the producer may lack the bandwidth, and the length 
of the shared queue decrease. In this situation, to avoid 
performance degradation, our method tries to reduce the number of 
cores assigned to consumer (MC) side when the queue length 
reaches the lower limit. This lessens the bandwidth occupied by 
consumers and effectively assigns more bandwidth to the producer. 
Fewer working cores also mean power-saving, for the cores which 
are not assigned can be turned off. 

On the other hand, if fewer cores are running for consumers 
than required, the average queue length will increase. This can also 
introduce a different type of performance degradation, thus our 
method tries to increase the number of cores assigned to consumer 
side when the queue length reaches the upper limit. Consequently, 
the decoder can maintain near-optimal performance even when the 
system suffers from the lack of the off-chip bandwidth. 

For example, when decoding an SD-size stream, the 
performance drops at 3 and 4 cores on an Intel quadcore processor 
(Q6600) thus not scales well as shown in Fig. 2. We found that the 
queue length is extremely short when the performance degradation 
is noticed. Because it is difficult to calculate optimal values of 
upper limit and lower limit mathematically, we choose the values 
empirically. From our experiment, 20 for upper limit and 16 for 
lower limit shows good performance for both CIF- and SD-size 
streams. 

4.3 Fair Load Balancing for Deblocking Filters 

The load imbalance caused by equal partitioning in deblocking 
filter is closely related to the characteristic of input data. The 
execution time of deblocking filter can be varied by the boundary 
strength (BS) values, which is a number assigned to each MB and 
subblock. The bigger BS values need the more time for deblocking 
filter calculation. 

However, using BS values for estimating the complexity of 
Deblock function is inefficient because it requires sequential 
calculation of BS values before the partitioning and parallel 
execution. Instead of directly using BS values themselves, MB 
type can be used as a good approximation of BS values. An intra 
MB has the larger BS value sum inside the MB and requires 
around 3 times longer Deblock execution time than inter MB.  

From this observation, we propose the improved load balancing 
method for deblocking filter, in which workloads are partitioned 
more fairly by estimating the deblocking filter complexity from 
MB types. When calculating the complexity of one macroblock 
line, intra blocks are weighted by 3 while inter blocks are not 
weighted. Our method reduces up to 7% of execution time in 
Deblock function by fairer load balancing. 

5. PERFORMANCE EVALUATION 

5.1. Input Streams and Evaluation Environment 

We used total two SD-size and three CIF-size H.264 streams for 
test streams. All the streams are encoded with JM 13.2 encoder, at 
baseline profile. We used two different symmetric multicore 
systems, Intel Core2Quad Q6600 and ARM 11 MPCore Platform 
Baseboard. All experiments were performed on the Linux 2.6.x. 

First, we measured the speedup along with the number of cores 
of decoder to which only basic parallelization is applied. Second, 
we performed evaluation with the version in which memory 
throttling and fair load balancing is applied for SD-size streams on 
Intel quadcore processor. 

5.2. Evaluation Result 

The performance summary is presented in Fig. 4. The speedup 
with CIF-size streams (football, foreman, mobile) was relatively 
good on both systems while the speedup with SD-size streams 
(3D-animation, action movie) on ARM MPCore was less 
significant. Moreover, on Intel quadcore processor, the 
performance at 3, 4 cores are not better than 2 cores, as described 
in previous sections. The SD-size streams used for evaluation tend 
to require more memory bandwidth for MC than CIF-size streams. 
In Fig. 5, the evaluation result of the software memory throttling 
method and the fair load balancing method is shown. 

2019



0

0.5

1

1.5

2

2.5

3

1 2 3 4
cores

sp
ee

du
p

CIF-Intel
CIF-ARM
SD-ARM

Fig. 4  Performance Summary of the Basic Parallelization 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4
cores

sp
ee

du
p

SD1-base

SD2-base

SD1-proposed

SD2-proposed

Fig. 5  The Effect of Proposed Methods (on Intel Q6600) 

The software memory throttling method effectively controls the 
number of cores assigned to MC, so that it worked well both with 
CIF-size streams and SD-size streams.  Especially, the memory 
throttling achieved 17% (action movie) and 24% (3D-animation) 
of performance improvement in SD-size streams over the basic 
parallelization, on the Intel quadcore processor. However, the 
memory throttling failed to achieve meaningful performance 
improvement on the ARM MPCore processor. We attribute this to 
the relatively slow speed of VLD on ARM 11 processor; therefore 
it is not affected much by MC processors. In other words, if a 
producer shows high computation/communication ratio, the 
memory throttling approach is not very effective for the overall 
performance even when the memory bus is saturated. Nevertheless, 
as long as the performance meets the real-time requirement, the 
software memory throttling approach gives chance of power-
saving.

As for the fair load balancing, even though the execution time 
of deblocking filter is reduced (Table 1), the overall decoding time 
is not affected much (below 0.5%). It is because deblocking filter 
occupies relatively small portion of the overall execution time, and 
VLD-Deblock overlapping is considered one of the reasons. 

Reduced Execution Time in 
Deblocking Filter (%), @4 cores Stream Size
Intel Q6600 ARM MPCore 

Mobile CIF 0.53 1.00
Football CIF 0.79 0.24
Foreman CIF 3.19 2.26
3D Animation SD 1.12 1.74
Action movie SD 7.34 6.68

Table 1  Performance Result of Fair Load Balancing 

6. CONCLUSION 

In this paper, we designed and implemented a parallel H.264 
decoder for multicore platforms. We found that the memory bus 
bandwidth limits the speedup when several cores for MC 
processing contend for the memory bandwidth. We proposed the 
software memory throttling technique to overcome performance 
degradation, and showed the proposed method is effective for the 
performance drop when 3 or 4 cores are running. We also 
proposed a more fair partitioning method for the deblocking filter 
workload by checking the macroblock types. Various multicore 
platforms can have different bottleneck points for the scalable 
performance in multimedia applications, and need more 
investigation into them. 

REFERENCES 

[1] S. Yang, S. Wang, and J. Wu, “A Parallel Algorithm for 
H.264/AVC Deblocking Filter Based on Limited Error 
Propagation Effect,” Proc. of the Intl. Conf. on Multimedia & Expo 
(ICME), July 2007. 

[2] E. B. van der Tol, E. G. T. Jaspers, and R. H. Gelderblom, 
“Mapping of H.264 decoding on a multiprocessor architecture,” 
Proc. of SPIE Conference on Image and Video Communications,
Vol. 5022, pp.707-718, January 2003. 

[3] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and K. 
Keutzer, “Efficient Parallelization Of H.264 Decoding with 
Macroblock Level Scheduling,” Proc. of the Intl. Conf. on 
Multimedia & Expo (ICME), July 2007. 

[4] Y. Kim, J. Kim, S. Bae, H. Baik, and H. Song, “H.264/AVC 
Decoder Parallelization And Optimization on Asymetric Multicore 
Platform Using Dynamic Load Balancing,” Proc. of the Intl. Conf. 
on Multimedia & Expo (ICME), June 2008. 

[5] K. Nishihara, A. Hatabu, and T. Moriyoshi, “Parallelization of 
H.264 Video Decoder For Embedded Multicore Processor,” Proc. 
of the Intl. Conf. on Multimedia & Expo (ICME), June 2008. 

[6] ffmpeg, http://ffmpeg.mplayerhq.hu/ 

2020


