
FORWARD ADAPTIVE KLT CODING

Carlos E. Davila

Electrical Engineering Dept., Southern Methodist University
Dallas, Texas 75205, USA

ABSTRACT

A framework for implementing the forward adaptive Karhunen-
Loève Transform (FAKLT) is described. Unlike backward adaptive
methods, FAKLT computes transform coefficients using basis vec-
tors derived from the most recent signal frame. As a result, it exhibits
improved energy compaction compared to the backward adaptive
KLT. The method encodes only the KLT coefficients and a small
amount of side information, the KLT basis vectors (eigenvectors)
are not encoded.

Index Terms— Data compression, Eigenvalues and eigenfunc-
tions, Karhunen-Loeve transforms, Adaptive systems

1. BACKGROUND

Many signal compression algorithms are frame-based, their goal be-
ing to represent the N × 1 source frame

xn =
[

x(nN − 1) x((nN − 2) · · · x(N(n− 1))
]T

n = 1, 2, . . ., with as few bits as possible. In transform coding,
rather than quantizing and encoding xn directly, it is multiplied by
a transform matrix A, giving a set of transform coefficients: yn =
AT xn. The matrix A is usually an orthonormal matrix, i.e. AAT =
I . These coefficients are then quantized, giving ŷn after which they
are encoded and transmitted. To recover x̂n, the decoder must also
have knowledge of the transformmatrix. The estimated source frame
is then given by x̂n = Aŷn. This is why the columns of the trans-
form matrix A are called the basis vectors of the transform. The
degree to which ŷn is close to yn of course will determine how close
x̂n will be to xn.

The KLT is known to be the optimum transform for Gaussian
sources, when using either a fixed rate or variable rate encoder [1].
Certain non-Gaussian sources have been found for which the KLT is
sub-optimal [2], while a relatively rich class of distributions called
Gaussian scale mixtures (GSM) and Gaussian vector-scale mixtures
(GVSM) are known for which the KLT is optimum [3]. The GSM
sources include as special cases the Laplacian, Cauchy, symmetrized
gamma, and lognormal densities and the GVSM sources extend the
range of distributions for which the KLT is optimum even further [3].
The KLT transform matrix consists of the eigenvectors of the auto-
correlation matrix of the source frame xn. By assumption xn has
autocorrelation matrix R = E

[
xnxT

n

]
, which is assumed to have

rankN . This means that xn can be represented as a linear combina-
tion of the eigenvectors of R given by q1, q2, . . . , qN , correspond-
ing to eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN > 0, respectively. Let
Q =

[
q1 q2 · · · qN

]
be an N ×N matrix whose columns

are the KLT basis vectors (eigenvectors of R). Then the transform
matrix is given by A = Q. The transform coefficients are given
by yn = QT xn. If the signal x(n) is statistically stationary then

the eigenvectors need only be computed and encoded once, which
would not lead to much loss of compression, however in practice,
the eigenstructure of most signals tends to vary considerably over
time. Hence the eigenvectors of R need to be constantly re-encoded
which is why the KLT is not often used. We will describe an algo-
rithm for doing KLT coding using forward-adaptive updates. That
is, the encoder transmits the transform coefficients, and the decoder
computes the transform matrix using only the transform coefficients
and a minimal amount of side information.

This paper is organized as follows: Section 2 gives a review of
backward-adaptive KLT algorithms. Section 3 describes the encoder
and decoder computations for the proposed forward-adaptive KLT
algorithm. Section 4 discusses some additional quantization effects
which the proposed algorithm exhibits that are not found in tradi-
tional transform coding. Finally, Section 5 documents some simula-
tions while Section 6 gives some conclusions.

2. BACKWARD ADAPTIVE KLT

Goyal et al. have developed an algorithm for doing backward adap-
tive KLT transforms [1]. Several closely related algorithms have also
been published [4, 5]. Backward adaptation makes it possible for the
decoder to determine the KLT basis vectors given only knowledge of
the KLT coefficients. In order to implement the backward adaptive
KLT, the autocorrelation matrix is estimated using

R̂n = γR̂n−1 + x̂nx̂T
n (1)

where 0 < γ < 1 and x̂n is the estimated source frame. Let

Q̂n =
[

q̂1,n q̂2,n · · · q̂N,n

]
(2)

and Λ̂n = diag(λ̂1(n), λ̂2(n), . . . , λ̂N (n)), λ̂1(n) ≥ λ̂2(n) ≥

· · · λ̂N (n) be the eigenvectors and eigenvalues, respectively, of R̂n.
The autocorrelation matrix is estimated using x̂n instead of xn be-
cause both the encoder and decoder need to have identical estimates
of the autocorrelation matrix in order for the decoder to be able to
compute the same KLT basis vectors being used by the encoder. The
encoder first computes the KLT coefficients as yn = Q̂T

n−1xn. The
key to backward adaptation is to use the transform matrix at time
n − 1 rather than at time n. The coefficients can then be quantized
ŷn = Δ (yn) where Δ represents an arbitrary quantizer. The en-
coder must then update the autocorrelation matrix estimate using (1)
with x̂n = Q̂n−1ŷn. The encoder then performs an eigenvalue de-
composition of R̂n to find Q̂n. Finally ŷn is encoded and sent to
the decoder. The decoder computes the source frame estimate as
x̂n = Q̂n−1ŷn. The decoder can then update R̂n and Q̂n just as
the encoder did. This approach to backward adaptive KLT, hence-
forth called BAKLT is summarized in Table 1. One drawback with
BAKLT is that it uses the KLT matrix at time n − 1, i.e. Q̂n−1 to
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encoder decoder
yn = Q̂T

n−1xn receive and decode ŷn

ŷn = Δ (yn) x̂n = Q̂n−1ŷn

x̂n = Q̂n−1ŷn R̂n = γR̂n−1 + x̂nx̂T
n

R̂n = γR̂n−1 + x̂nx̂T
n R̂n = Q̂nΛ̂nQ̂n

R̂n = Q̂nΛ̂nQ̂n

encode and transmit ŷn

Table 1. Computations for backward adaptive KLT (BAKLT).

compute that KLT coefficients at time n. This is problematic given
that the KLT basis vectors at time n− 1 do not account for any new
information in xn. Though several authors have shown that back-
ward adaptive KLT will eventually converge to the optimum KLT,
this is only true for stationary sources [1, 5]. If the source is non-
stationary, BAKLT will always require an increased rate in order to
arrive at the distortion level which the conventional KLT can achieve.
This is due to the the fact that at time n, the KLT basis vectors have
only been adapted up to time n− 1. In nonstationary environments,
the KLT will exhibit improved energy compaction in its transform
coefficients relative to the BAKLT.

3. FORWARD ADAPTIVE KLT

Forward adaptive KLT (FAKLT) differs from BAKLT in several im-
portant respects. While BAKLT uses Q̂n−1 to form the KLT coef-
ficients, FAKLT uses the eigenvectors of Rn = γR̂n−1 + xnxT

n

which we denote by Qn, since the update uses the original, unquan-
tized frame xn. The encoder then computes the KLT coefficients
yn = QT

nxn which are then quantized to form ŷn. On the other
hand, in order to replicate the computations being carried out by the
decoder, the encoder must ultimately compute x̂n = Q̂nŷn, from
which it obtains R̂n = γR̂n−1 + x̂nx̂T

n Both the encoder and de-
coder find Q̂n from ŷn by solving an additive inverse eigenvalue
problem (AIEP). Consider the sample autocorrelation matrix update:

R̂n = γR̂n−1 + Q̂nŷnŷT
n Q̂T

n (3)

Pre- and post-multiplying by Q̂T
n and Q̂n, respectively, and rear-

ranging gives γQ̂T
n R̂n−1Q̂n = Λ̂n − ŷnŷT

n . If we treat the di-
agonal matrix Λ̂n as an unknown quantity, say C, the AIEP in-
volves finding the unknown diagonal matrix C such that the eigen-
values of C − ŷnŷT

n match the eigenvalues of γQ̂T
n R̂n−1Q̂n. Since

these eigenvalues, γΛ̂n−1, and the KLT coefficients ŷn are known
to the encoder and decoder at time n, the problem is tractable. The
AIEP has been studied extensively and can be solved with New-
ton’s method [6, 7]. Once C = Λ̂n has been found, an eigen-
value decomposition leads to ŴnΛ̂n−1Ŵ

T
n = Λ̂n − ŷnŷT

n where
Ŵn = Q̂T

n Q̂n−1. This makes it possible to compute the KLT basis
vectors as Q̂n = Q̂n−1Ŵ

T
n . The sign of the eigenvectors in Ŵn

may not agree with the corresponding signs of Q̂n and Q̂n−1 so by
convention, the encoder chooses the sign of the eigenvectors in Qn

so that the diagonal entries of Wn ≡ QT
n Q̂n−1 are positive. For

now, we will also assume that the diagonal entries of Wn have the
maximum modulus for each column. The signs of of the columns
of Ŵn can subsequently be chosen so that its diagonal entries are
positive. We will assume that the eigenvalues Λ̂n−1 are distinct, i.e.
λ̂1(n−1) > λ̂2(n−1) > · · · > λ̂N(n−1). To solve the AIEP, we

apply Newton’s method to the following nonlinear system of equa-
tions

fn(c) =

⎡
⎢⎢⎢⎣

γλ̂1(n− 1)− λ̃1(n)

γλ̂2(n− 1)− λ̃2(n)
...

γλ̂N (n− 1)− λ̃N(n)

⎤
⎥⎥⎥⎦ = 0 (4)

where λ̃i(n), i = 1, . . . , N , are the eigenvalues of C − ŷnŷT
n with

C = diag(c), and c ∈ R
N is the unknown parameter vector. Let the

eigenvectors of C − ŷnŷT
n be

Ŵn =
[

ŵ1,n ŵ2,n · · · ŵN,n

]
(5)

Since λ̃i(n) = ŵT
i,n

(
C − ŷnŷT

n

)
ŵi,n, i = 1, . . . , N ,the ikth entry

of the Jacobian of fn(c) can be shown to be given by

Jij(c) = ŵi,n(j)2, i, j = 1, . . . , N (6)

The parameter vector in Newton’s method is updated by solving the
following linear system J (ck) (ck+1 − ck) = fn (ck)where ck rep-
resents the kth iterate, and ideally should converge to the elements
of Λ̂n. The details for this method can be found in [6] under Method
I. Newton’s method for the AIEP converges quadratically, provided
the starting point is sufficiently close to the solution [6]. The itera-
tion is carried out until the eigenvalues of diag(ck)−ŷnŷT

n converge
to γΛ̂n−1. To insure that Newton’s method converges, we use ho-
motopy continuation [8, 9]. The quantity λ̃k(n), k = 1, . . . , N in
(4) is replaced by the eigenvalues of C − tŷnŷT

n where 0 ≤ t ≤ 1.
For t = 0, the AIEP has a simple solution, the diagonal elements
of γΛ̂n−1. By slowly increasing t toward 1, Newton’s method is
able to track a solution, since the starting point is always close to
the solution. The solution for t = 1, of course, corresponds to the
desired solution for the AIEP. It can be readily seen that the AIEP in
(4) with λ̃i(n) = wT

i,n

(
C − tŷnŷT

n

)
wi,n, i = 1, . . . , N is a homo-

topy function, h(c, t) : R
N+1 → R

N . Moreover, it can be shown
that h(c, t) = 0 represents a solution path in R

N+1 that is unique
and continuously differentiable [8]. We will let t increase monoton-
ically, i.e. we will not allow intermittent decreases. The following
theorems, stated without proof, give conditions under which this can
happen.

Theorem 1. Let J̄ be the N × (N + 1) Jacobian matrix of the ho-
motopy function h : R

N+1 → R
N . If the sign of det J̄N+1 remains

fixed, and det J̄N+1 �= 0 then t can be increased monotonically.

Theorem 1 essentially fixes how large we can let t get. Let
tmax be this maximum value. Given that t can only increase mono-
tonically, we must establish conditions which enable tmax to attain
the desired value of one, and thereby allow us to find a solution to
fn(c) = 0. The following theorem, which makes use of the matrix
2-norm, does this.

Theorem 2. If ‖γΛ̂n−1‖2 is sufficiently larger than ‖tŷnŷT
n ‖2, then

tmax ≥ 1. Moreover, ‖γΛ̂n‖2 can be made arbitrarily large by
letting γ → 1.

The trade-off to choosing γ close to one is, of course, a loss of
adaptivity. The following theorem addresses the number of solutions
to the AIEP.

Theorem 3. The AIEP has N ! solutions for 0 ≤ t ≤ tmax.
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A similar result for more general inverse eigenvalue problems
is given in [10]. Since there are N ! possible solutions to the AIEP,
finding the correct solution becomes a seemingly impossible task
for large values of N . However this task can be greatly simplified
by noting that the autocorrelation matrix eigenvectors do not change
much from one frame to the next. The encoder, which has access
to Qn can determine the extent of the changes in the eigenvectors
from frame n − 1 to frame n by computing Wn = QT

n Q̂n−1. The
diagonal entries of this product should be large, typically between
0.7 and 1. Even though the change in the eigenvectors may be small,
two or more adjacent eigenvectors may permute from one frame to
the next. Under these conditions then clearly, the homotopy con-
tinuation method will converge to one of the N ! − 1 incorrect so-
lutions. To insure convergence to the correct solution, we re-order
the KLT coefficients ŷn so that they correspond to the ordering of
the eigenvalues Λ̂n−1. Re-ordering the KLT coefficients implies a
corresponding re-ordering of the columns of Qn. Once the correct
solution is obtained at t = 1, the eigenvalues of R̂n can simply be
sorted in decreasing order in preparation for the next frame.

4. EIGENVECTOR SENSITIVITY TO QUANTIZATION

Next, we look at the sensitivity of the eigenvectors computed with
the homotopy continuation method in response to quantization er-
rors. This is important because since x̂n = Q̂nŷn, quantization er-
rors in x̂n will depend on quantization errors present in both Q̂n and
ŷn, rather than on just ŷn as is the case when using more traditional
forms of transform coding. We begin with a well-known result from
eigenvector perturbation theory [11]

Theorem 4. Let the matrix A ∈ R
N×N have eigenvectors q1, q2, · · · , qN

and corresponding eigenvalues λ1 ≥ λ2 ≥ · · ·λN . For some pos-
itive constant ε 	 1, the eigenvectors q̂m of A + εF can be
approximated as

q̂m ≈

⎡
⎢⎣qm +

N∑
i=1
i�=m

qT
i Fqm

λm − λi

qi

⎤
⎥⎦ , m = 1, . . . , N (7)

Since the eigenvectors in Q̂n differ from Ŵ T
n by a multiplication

with an orthogonal matrix, i.e. Q̂n = Q̂n−1Ŵ
T
n , quantization errors

in Q̂n will have the same matrix norm as those of Ŵ T
n . Consider

the matrix C − ynyT
n . The solution to the AIEP is C = Λn, the

eigenvalues of Rn. On the other hand, the AIEP solution to C −

ŷnŷT
n is C = Λ̂n �= Λn. Letting ΔΛn = Λ̂n − Λn and Δŷn =

ŷn − yn, gives

F =
1

ε

(
ΔΛn + ΔŷnŷT

n + ŷnΔŷT
n + ΔŷnΔŷT

n

)
(8)

The quantity ΔΛn represents the error in the AIEP solution due to
quantizing the KLT coefficients. Finding an upper bound on the
norm of F is beyond the scope of this paper. However we can exploit
Theorem 4 by noting that the perturbation of the eigenvectors in Ŵn

is due to the norm of F as well as the separation of the eigenvalues of
γR̂n−1, the target eigenvalues in the AIEP. Therefore, target eigen-
values that are too tightly clustered can generate unacceptable errors
in the eigenvectors Ŵn, which can lead to correspondingly large er-
rors in Q̂n and x̂n. To address this issue, the encoder can modify
highly clustered target eigenvalues when it detects an error between
xn and x̂n that exceeds a given threshold. The following approach

was used in the simulations described in the following section. First,
compute the normalized difference of the eigenvalues

a(k) =
(
λ̂k(n− 1)− λ̂k+1(n− 1)

)
/λ̂k(n−1), k = 1, . . . , N−1

(9)
Then the minimum of the a(k), k = 1, . . . , N−1, a(kmin) is found
and the (kmin + 1)th eigenvalue is adjusted as

λ̂kmin+1
(n− 1) = 0.25λ̂kmin+1

(n− 1) + 0.75λ̂kmin+2
(n− 1)

(10)
The adjustment has the effect of increasing the separation between
a pair of clustered target eigenvalues. If kmin = N − 1, then no
adjustments are made. Since the adjustment depends entirely on the
target eigenvalues, only one bit of side information is needed in order
to inform the decoder that an adjustment must be made. The algo-
rithm currently does not allow for more extensive target eigenvalue
adjustments, say, if there are multiple clustered eigenvalues. A list-
ing of the encoder and decoder computations for FAKLT is shown in
Table 2.

for n = 1, 2, . . . E D
Rn = γR̂n−1 + xnxT

n •
QnΛnQT

n = Rn •

Wn = QT
n Q̂n−1 •

order columns of Qn so they agree with Λ̂n−1 •
adjust signs of columns of Qn so that •

the diagonal entries ofWn are positive
yn = QT

nxn •
ŷn = Δ (yn) •
receive and decode ŷn •

c0 =
[

1 · · · 1
]T

• •

c1 =
[

γλ̂1(n− 1) . . . γλ̂N (n− 1)
]T

• •
for t = 0, δt, . . . , 1 • •

k = 1 • •

while ‖Λ̃n − γΛ̂n−1‖ > δ • •
compute fn(ck) • •
B = diag(ck)− tŷnŷT

n • •

ŴnΛ̃nŴ T
n = B • •

Jik = ŵi,n(k)2, i, k = 1, . . . , N • •
solve J (ck+1 − ck) = fn (ck) for ck+1 • •
k + + • •

end while • •
end for • •

Λ̂n = diag(ck+1) • •

Q̂n = Q̂n−1Ŵ
T
n • •

x̂n = Q̂nŷn • •

if ‖xn − x̂n‖ > ε, adjust Λ̂n−1, repeat computations •
for frame n, and set adjustment bit

encode and transmit ŷn and adjustment bit •

R̂n = γR̂n−1 + x̂nx̂T
n • •

Table 2. Computations for forward adaptive KLT (FAKLT). Encoder
(E) and decoder (D) computations are indicated by bullets. The de-
coder computations would typically be computed at least one full
frame after the encoder computations.
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5. SIMULATIONS

A simulation comparing forward and backward adaptive KLT
(FAKLT and BAKLT, respectively) was performed. The en-
coded signal consisted of two time-varying sinusoids: x(n) =
cos(ω1n) + cos(ω2n) where ω1 = 0.3π cos(0.0001πn) and
ω2 = 0.7π cos(0.0001πn). The length of each frame was N = 8,
and FAKLT and BAKLT were run for a total of 1000 frames with
γ = 0.98. A uniform midtread quantizer with a step size of 0.001
was used to quantize the transform coefficients. The initial value of
the sample autocorrelation matrix was set to R̂0 = 200IN , where
IN is the identity matrix. Only a single target eigenvalue adjustment
was allowed for each frame. Both FAKLT and BAKLT produced
similar errors, the averaged squared error norm for FAKLT was
8.2800× 10−7 compared to 6.6592 × 10−7 for BAKLT. The slight
increase in error exhibited by FAKLT is most likely due to errors
in Q̂n as discussed in Section 4. The square of the quantized trans-
form coefficient vector was averaged over all frames. As shown in
Figure 1, FAKLT is seen to provide better energy compaction than
BAKLT. Out of the 1000 frames, there were 19 frames that required
eigenvalue adjustments.

6. CONCLUSIONS

A framework for signal compression based on a forward adaptive
KLT was described. The proposed method solves an inverse eigen-
value problem to compute the KLT basis vectors from the trans-
form coefficients. This eliminates the need to encode the KLT basis
vectors. Homotopy continuation was used to insure that Newton’s
method converges to the correct solution. In simulations, the algo-
rithm was demonstrated to provide better energy compaction than
the backward adaptive KLT. A down-side of the proposed method is
its high computational complexity, since each Newton iteration re-
quires an eigenvalue decomposition. Complexity can be reduced by
reformulating the system of equations in (4) using the formula for
the eigenvalues of a diagonal plus rank-1 matrix [11]. Since the ma-
trix C− tŷnŷT

n , is a diagonal plus rank-1 matrix, c can be computed
using Newton’s method without resorting to an eigenvalue decom-
position. The resulting equations also have the same solution paths
as (4) and can easily be shown to have the same Jacobian, to within
a scalar constant.
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Fig. 1. Averaged squared transform coefficients for FAKLT and
BAKLT. FAKLT gives better energy compaction than BAKLT.
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