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ABSTRACT

Audio event detection is one of the tasks of the European

project VIDIVIDEO. This paper focuses on the detection of

non-speech events, and as such only searches for events in

audio segments that have been previously classified as non-

speech. Preliminary experiments with a small corpus of sound

effects have shown the potential of this type of corpus for

training purposes. This paper describes our experiments with

SVM and HMM-based classifiers, using a 290-hour corpus of

sound effects. Although we have only built detectors for 15

semantic concepts so far, the method seems easily portable

to other concepts. The paper reports experiments with multi-

ple features, different kernels and several analysis windows.

Preliminary experiments on documentaries and films yielded

promising results, despite the difficulties posed by the mix-

tures of audio events that characterize real sounds.

Index Terms— audio segmentation, event detection

1. INTRODUCTION

The framework for this work is the European project VIDI-

VIDEO, whose goal is to boost the performance of video

search engines by forming a 1000 element thesaurus. Instead

of carefully modeling each different semantic concept, the ap-

proach is to apply machine learning techniques to train many,

possibly weaker detectors, describing different aspects of the

audio-video content. The combination of many single class

detectors will render a much richer basis for the semantics.

The integration of cues derived from the audio signal is es-

sential for many types of search concepts. Our role in the

project is to contribute towards this integration with three dif-

ferent modules: audio segmentation, speech recognition, and

detection of audio events. This paper concerns the last mod-

ule.

Audio Events Detection (AED) is a relatively new re-

search area with ambitious goals. Typical AED frameworks

are composed of at least two parts: feature extraction and au-

dio event inference. Optionally, there may be an intermediate

stage of key audio effect detection, typically based on Hidden

Markov Models (HMMs), that explores the time structure of

the events and/or models interconnections between key audio

effects (e.g. an explosion being preceded by a car crash).

The feature extraction process deals with different type

of features, such as: total spectral power, sub-band power,

brightness, bandwidth, MFCC (Mel-Frequency Cepstral Co-

efficients), PLP (Perceptual Linear Prediction), ZCR (Zero

Crossing Rate), pitch frequency, etc. Brightness and band-

width are, respectively, the first and second order statistics of

the spectrogram, and they roughly measure the timbre qual-

ity of the sound. Many of these features are common to the

audio segmentation and speech recognition modules. Due to

the large amount of features that can be extracted, consider-

ing them all can lead to lengthy training processes due to slow

convergence of the classification algorithms. In this situation,

it is common practice to use feature reduction techniques like

Principal Components Analysis (PCA) and Linear Discrimi-

nant Analysis (LDA), which map the features into a new vec-

tor space where the greatest variance by any projection of the

data lies on the first coordinate, the second greatest variance

lies on the second coordinate, and so on.

In the inference process, various machine learning meth-

ods are used to provide a final classification of the audio

events such as rule-based approaches (RB) [10], Gaussian

mixture models (GMMs) [5] [4] [7] , Support Vector Ma-

chines (SVMs) [5] [6] [7] , and Bayesian Networks [2].

In this work we used HMMs and SVMs for building a

one-against-all classifier for each semantic concept. This

approach allows an easy extension to new semantic con-

cepts, although better results could potentially be achieved by

multiple-class classification.

Given the unavailability of a corpus labeled in terms of

audio events, we used a sound effect corpus for training. The

potential of this type of corpus was proved in early experi-

ments with a small pilot corpus [9]. The extended training

corpus and the small test corpus of documentaries and movies

will be described in section 2. The next section motivates

our two-stage AED approach that first distinguishes between

speech and non-speech audio events. Section 4 describes our

multiple experiments with one-against-all detectors. Finally,

section 5 presents the main conclusions and future plans.
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2. CORPORA AND EVALUATION METRICS

The first corpus we considered for the task of audio events

detection was a small pilot corpus of 422 sound effects files,

totaling 6.8h, provided by B&G, one of the partners of the

project. The choice of a sound effects corpus was made be-

cause it is intrinsically labeled, as each file typically contains

a single type of sound. Since the initial results were quite

promising, we moved on to a larger corpus of approximately

18700 files with an estimated total duration of 289.6h, also

provided by B&G. The corpus includes enough training mate-

rial for over 40 different audio events, but so far we have only

considered 15. This initial list is presented in Table 1, together

with the number of files and corresponding duration that were

used as training/development corpus for each classifier. Most

of the files have a sampling rate of 44.1kHz. However, many

were recorded with a low bandwidth (<10kHz).

In order to test the one-against-all detectors in a real life
situation, we manually labeled a number of movies, docu-

mentaries (DOC), talk shows (TS) and broadcast news (BN)

that were likely to contain this initial list of audio events. This

real life corpus covers 13 of the 15 audio events.

The development experiments described in this paper will

be assessed in terms of the well-known F-measure. However,

the experiments with the evaluation set will be assessed both

in terms of the ratio (prp) of true positives (tp) over total num-

ber of positives (p), and the ratio (prn) of true negatives (tn)

over total number of negatives (n). In this work the detection

performance (in every metric) is frame-based. Classification

results in the test set are smoothed over time [9].

3. TWO-STAGE AED

Our initial experiments with the pilot sound effect corpus led

us into adopting a two-stage approach for audio event de-

tection. The first stage applies a speech/non-speech detec-

tor. This stage attempts to separate the events that are typi-

cally produced by the human speech production system (not

only speech, but also laughing, crying, screaming, etc.), from

the ones that are not related to human voice. In the sec-

ond stage, separate classifiers attempt to detect either speech-

related events or non-speech events, according to the initial

classification. This paper addresses only the last category.

The original speech/non-speech (SNS1) detector is based

on an MLP (Multi-Layer Perceptron) trained with PLP fea-

tures, extracted from a corpus of broadcast news. Although

the performance of the classifier is very good for this domain

[1], the type of non-speech events is quite limited (e.g. jin-

gles). When tested in the sound effect corpus, the SNS some-

times detects speech in non-speech events, as shown in the

fourth column of Table 1, which contains the duration of the

detected speech segments.

This observation motivated the retraining of the detector

including non-speech examples randomly selected from the

large sound effects corpus (excluding the files that were used

for training each audio event classifier). The results obtained

with the new detector (SNS2), given in the last column of

Table 1, show an excellent false positive ratio (non-speech

classified as speech), except for the Helicopter concept. Ad-

ditionally, in a speech database, equivalent (speech) detection

performance to the original SNS1 detector was observed.

Audio event #Files Duration SNS1 SNS2

Airplane Jet 26 1210.2 31.6 0.0

Airplane Propeller 58 2523.3 22.2 0.0

Birds 93 6339.8 106.9 0.0

Bus 34 2736.2 10.2 0.0

Cat Meowing 42 1157.1 2.6 0.0

Crowd Applause 30 1308.4 0.0 0.0

Dog Barking 45 1860.5 35.7 0.0

Gun-Shot 110 2435.4 95.7 0.0

Helicopter 26 1298.5 56.8 28.8

Horse Walking 85 3311.0 9.1 0.0

Sirens 47 1133.1 2.5 0.0

Telephone Bell 17 562.3 6.2 0.0

Telephone Digital 14 337.5 40.7 0.0

Traffic 32 4396.9 1.3 0.0

Water 72 6147.7 0.0 0.0

Total 762 36757.9 421.4 28.8

Table 1. List of audio events: number of files, total duration,

and amount of data misclassified as speech (seconds).

4. ONE-AGAINST-ALL DETECTORS

With the objective of obtaining simple one-against-all detec-

tors, we have built “concept-specific” and “world” models

for the list of audio events. Our first experiments were car-

ried out using the LIBSVM toolkit [3], for the 15 concepts.

Then we performed in parallel experiments using the HMM

toolkit from HTK [11] and feature dimensionality reduction

techniques, for a restricted number of concepts.

4.1. SVM classifiers

The initial experiments were made with the purpose of eval-

uating the event detection results provided by different com-

binations of well-known features that will serve as a baseline

for future comparisons. At this stage we only considered the

use of PLP or MFCC (19 coefficients + energy + deltas) and

3 additional features: brightness, bandwidth and ZCR. The

“world” model was build using between 92 and 96 files, of

which an average of 31 were used as the development set. As

a starting point, analysis windows of 0.5s with 0.25s overlap

were adopted. Three different kernels were considered for the

SVM (linear, polynomial and radial basis function (RBF)),

but only the results for the RBF kernel are shown, as they
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Event MFCC+3 MFCC PLP+3 PLP

AJ 0.82 0.77 0.78 0.76

AP 0.78 0.79 0.79 0.81
Bi 0.90 0.90 0.89 0.90

Bu 0.90 0.84 0.87 0.87

CM 0.75 0.71 0.80 0.81
CA 0.98 0.97 0.99 0.99

DB 0.95 0.95 0.90 0.90

GS 0.86 0.84 0.87 0.86

He 0.75 0.71 0.82 0.80

HW 0.92 0.92 0.99 0.95

Si 0.86 0.88 0.89 0.90
TB 0.80 0.85 0.84 0.96
TD 0.80 0.87 0.91 0.91
Tr 0.87 0.87 0.91 0.89

Wa 0.96 0.97 0.97 0.97

Table 2. SVM results for the development set (F-measure).

were overall better than the others. The results for these ini-

tial experiments on all considered audio events are presented

in Table 2. The results obtained on the test set using the best

combination of features on the development set are shown in

Table 3. These results confirm that detecting audio events in

real life data is much more challenging than the classification

of isolated events. We expect that AED can benefit from in-

corporating time structure models and new features.

4.2. HMM classifiers: Modeling time structure

After the initial experiments with SVMs, we tried to take ad-

vantage of the periodic nature of some audio events. Although

SVMs are a powerful machine learning tool, some other tools,

like HMMs, are more suitable for modeling the time structure.

Some of the 15 chosen audio events present a strong periodic

nature, such as Airplanes, Helicopters and Sirens. We have

chosen Sirens to test the HMM approach, due to their very

distinct frequency characteristics. Left-to-right models with

several number of states and Gaussian mixtures were trained

to tune these parameters according to the development set re-

sults. MFCC features (12 coefficients + energy + deltas) of

three different window lengths were used. In these experi-

ments, the audio files have been down-sampled to 16kHz.

The results for the test set are shown in Table 4. These

were obtained using the number of states and mixtures that

yielded the best results on the development set. Even using

a more limited feature set, the results for the 20ms window

length show a small improvement over the previous SVM re-

sults (0.43 mean positive detection, compared with 0.29 for

the SVMs). Only for the second file the results were worse.

4.3. Extended feature set

In the several experiments carried out throughout this work

we could verify that the results of the SVM classifiers were

Event Test file prp prn

AJ TopGun 0.94 0.25

AP TheAviator 0.66 0.90

Bi

DOC1 1.00 0.74

DOC2 0.04 0.72

DOC3 1.00 0.74

CA
TS1 0.29 0.98

TS2 0.26 0.99

DB
DOC4 0.62 0.95

DOC5 0.96 0.73

GS TheMatrix 0.67 0.81

He DieHard4 0.88 0.51

HW 007-AViewToAKill 0.24 0.35

Si

007-AViewToAKill 0.33 0.96

DieHard4 0.49 0.94

BN1 0.21 0.97

TB
TheMatrix 0.68 0.99

TheAviator 0.76 0.99

TD
TheMatrix 0.00 1.00

DieHard4 0.00 1.00

Tr DieHard4 0.27 0.80

Wa DOC6 0.45 0.94

Table 3. SVM results for the test set (prp and prn).

Test file 20ms 60ms 100ms

prp prn prp prn prp prn

007 0.47 0.94 0.30 0.99 0.18 0.99

DieHard4 0.18 0.98 0.17 0.99 0.06 0.99

BN1 0.48 0.97 0.36 0.99 0.42 0.99

Total 0.43 0.97 0.32 0.99 0.29 0.99

Table 4. Results of training HMMs with several window

lengths, for the test set (Sirens).

highly dependent on the set of features. Since the Siren

audio event has distinct frequency characteristics, we have

explored an extended set of features that includes pitch. We

have also tested a different method for representing feature

variation, Shifted Delta Cepstrum (SDC) [8] (parameters:

d=1,P=2,k=2). Because the pitch was extracted using 20ms

windows and all the other features were extracted using

500ms windows, for every feature vector we included several

pitch values. The total size of the extended feature vector

is 52. Table 5 shows the results for the SVMs using PLPs

(with deltas or SDC), the 3 additional features and pitch. The

results were slightly worse compared to Table 3.

4.4. Data dimensionality reduction

The results obtained by adding the pitch feature have shown

that increasing the number of features may decrease the per-

formance of the SVMs. This motivated the use of PCA to

perform feature dimensionality reduction on the Siren audio
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Test file
PLPdeltas+3+pitch PLPSDC+3+pitch

prp prn prp prn

007 0.24 0.97 0.32 0.97

DieHard4 0.28 0.96 0.18 0.98

BN1 0.41 0.97 0.38 0.99

Total 0.34 0.97 0.33 0.98

Table 5. SVM results with extended features (Sirens).

Test file
Variance PLPdeltas+3+pitch

PCA coverage prp prn

007

2 85% 0.45 0.96

3 90% 0.50 0.96

10 95% 0.39 0.95

20 99% 0.38 0.97

DieHard4

2 85% 0.32 0.99

3 90% 0.29 0.98

10 95% 0.14 0.97

20 99% 0.14 0.98

BN1

2 85% 0.80 0.95

3 90% 0.95 0.92

10 95% 0.91 0.85

20 99% 0.63 0.92

Total

2 85% 0.62 0.97

3 90% 0.71 0.96

10 95% 0.63 0.93

20 99% 0.48 0.96

Table 6. SVM results with PCA features (Sirens).

event data. One of the advantages of PCA is to allow for a

faster execution of the training process by reducing the num-

ber of features. Moreover, by combining the most discrimi-

nating features into a small set, the PCA removes unimportant

data that can decrease the performance of machine learning

algorithms such as SVMs. Table 6 shows the results using

different numbers of PCA features. The principal components

are calculated in the training set and their respective variance

coverage rate is verified in the development set. The results

show significant improvements relatively to the results using

pitch, and are better than the initial SVMs results for the test

set.

5. CONCLUSIONS AND FUTURE WORK

The initial experiments presented in this work allowed us to

conclude that the performance of the classifiers in the sound

effect corpus can be very different from the performance on

the real data test set, where several audio events can coexist

simultaneously and where recording conditions can be signif-

icantly different. Even so, the advantages of using an intrinsi-

cally labeled corpora, and the good results obtained in some

audio events, justify this choice of training corpora. We are

currently working towards reducing the differences between

the training/development and test data by using normalization

techniques, and we are also testing agglomerative clustering

approaches. We observed that HMMs are a promising method

for our AED task that justifies further tests. The use of fea-

ture dimensionality reduction methods is also worth pursuing,

particularly when dealing with several features that may influ-

ence differently the detection of acoustic events.
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