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ABSTRACT

In this paper we present a novel hierarchical and scalable three-stage
algorithm to effectively perform musical audio semantic segmenta-
tion. In the first stage, the energy spectrum of the entire audio track
is analyzed to find significant energy textures that may characterize
different semantic segments; in the second and third stages, tonal
and timbric features are used to refine the segmentation by moving
or deleting segment boundaries. Experimental results on a set of 58
songs show that our algorithm is able to attain good semantic seg-
mentation just after the first step, with a precision of 64% and a recall
of 96%. After second step the precision increases to 79%; the best
precision result is obtained after the third step, where a value of 85%
is reached. In this step the minimum average recall value of 92% is
obtained.

Index Terms— Semantic Music Segmentation, Audio Struc-
tural Analysis, Audio Novelty Analysis.

1. INTRODUCTION AND RELATED WORK

Usually, when we listen to a piece of music we are able to detect and
recognize a set of semantic parts or segments that constitute the high-
level structure of the piece: for example, we can often easily detect
an introduction, one or more verses, and the chorus. The problem
of automatically detecting semantic segments is a challenging field
of research for its intrinsic usefulness in practical Music Informa-
tion Retrieval (MIR) applications: for example, a segment which is
discovered as semantically meaningful may be extracted and used to
give a short sample of the musical piece to the listener [1]; semantic
segmentation may be exploited to give to the listener the possibility
to navigate into the piece in a semantic way; discovering the se-
mantic structure may be also a point of strength for music similarity
computation and music recommendation applications [2]; also the
interaction and the synchronization of the audio stream with other
events may benefit from semantic segmentation.

Various approaches have been used in the literature to perform
semantic segmentation; many works exploit a similarity measure be-
tween intra-song fragments to detect music track structure. The sim-
ilarity measure may be visualized using a similarity or distance ma-
trix [3]. In [3], Foote uses the similarity matrix to visualize the time
structure of music and audio. In [4] the same author describes a
novelty audio measure computed from the similarity matrix, which
can be used to segment the musical piece. Bartsch and Wakefield
[5] describe a method to find choruses by analyzing parallel high-
correlation paths in the similarity matrix built using chroma-based
audio representations. The most recurring chorus is used as a thumb-
nail of the musical piece. Ong and Herrera [6] use 2D morphological
operators on similarity matrix to better recognize the fundamental
structural elements used to describe the semantic global structure of
the piece. Other works make use of machine learning techniques to

segment a song; for example, Aucouturier and Sandler [7] present a
segmentation algorithm based on a hidden Markov model; each state
of the HMM, after appropriate training, corresponds to a different
audio texture. Logan and Chu [8] propose a technique for extracting
the ‘key phrase’ of a piece of music: after modeling the song using
audio features, the structure of the song is discovered by training a
HMM. The key phrase is then extracted using a heuristic approach.
Exploiting the Extended Baum-Welch transformations, Sainath et al.
[9] describe a segmentation method which identifies the most signif-
icant spectral changes to detect segment boundaries. Other works
[10][11] exploit singular value analysis to cluster similar audio data.

In general, the segmentation algorithms presented in the liter-
ature are monolithic. The idea of structuring a segmentation algo-
rithm in different steps has been used, for example, by Ong and
Herrera [6], but, in general, without a specific and clear scalability
goal. For our MIR applications, we needed an algorithm capable of
good segmentation performance, but also scalable, i.e. composed of
different stages of increasing complexity which can be used in dif-
ferent combinations to reach different complexity and performance
results. Depending on the level of the needed segmentation detail,
the algorithm presented in this article can be either stopped at the
end of the third step or at intermediate step, achieving a good scala-
bility of performance. To perform segmentation in the first step, we
present a new segmentation algorithm based on spectral energy tex-
ture change detection. Furthermore, a combination of well-known
techniques based on multi-feature similarity analysis are used to per-
form a robust boundary repositioning and similarity detection for
segment merging in the second and third steps.

The paper is structured as follows. In Section 2 we give a general
overview of the proposed algorithm. Section 3 describes in detail the
operations related to the extraction of the coarse segmentation based
on the analysis of spectral energy peaks. In Section 4 the two phases
related to segmentation refinement using multi-feature vectors are
described. Algorithm performance results are presented in Section
5. Finally, Section 6 draws some concluding remarks.

2. ALGORITHM OVERVIEW

In the first phase we try to detect the rhythmic and melodic patterns
that constitute specific spectral textures in the audio signal spectrum.
Such textures can be analyzed to reveal prominent spectral energy
peaks and, in particular, their duration intervals into the musical sig-
nal. Using only the spectral energy computed directly from the sig-
nal, the goal of this phase is to extrapolate a first segmentation of
the musical track by detecting important changes in spectral texture
over time. The output of this phase is composed of a set of segment
boundaries that, if needed, will be refined and pruned in the next
phases.

In the second phase, timbral and tonal analysis is used to refine
the boundary set extracted in the previous step. For each boundary,
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a local novelty analysis is computed over a small time interval cen-
tered on the candidate boundary. During this phase a boundary can
be repositioned more precisely or can be removed when one of the
two related segments has been detected as too short.

The third phase performs segment merging exploiting the same
timbral and tonal features of the previous step. Each segment is rep-
resented using a mean feature vector, and for each feature a segment-
similarity matrix is computed. Two adjacent segments are merged
together if they are detected as similar by all the segment-similarity
matrices.

In the following sections we describe each phase in more detail.

3. SEGMENTATION THROUGH ANALYSIS OF
SPECTRAL ENERGY PEAKS

Given a monaural audio signal x(n), sampled at 11025 Hz, the
related spectrogram function X(w, f) is computed, where w =
1, .., W is the analysis window index and f = 1, .., F is the fre-
quency bin index. A Hamming function is used to extract each
signal window of length of 0.5 sec. The window overlap is set to
50%.

A gamma correction function is used over the spectrogram to
highlight the spectral energy textures more clearly:

X̂(w, f) = Xγ(w, f). (1)

In our framework we use γ = 0.3. Based on X̂(w, f) we select
the prominent average-energy peaks. These peaks will be later used
to select the most important spectral energy subbands to perform
texture change detection. For each frequency bin the average energy
over time is computed:

Eavg(f) =
1

W

W∑
w=1

X̂(w, f). (2)

Then, an adaptive threshold is applied to Eavg(f). The threshold for
the frequency bin f is defined as follows:

T (f) =
Eavg(f − 1) + Eavg(f) + Eavg(f + 1)

3
cT . (3)

We consider E(0) = E(F + 1) = 0. The constant cT depends
on the spectrogram of the analyzed musical piece. Given the ratio
rT between the number of spectrogram coefficients above the T (f)
thresholds and the total number of spectrogram coefficients, the con-
stant cT is set to have rT = 0.35. After thresholding, all the values
X̂(w, f) < T (f) are set to 0.

Given the function Eavg(f), it is uniformly subdivided in three
subbands, to obtain the functions Eavg,i(f), i = 1, 2, 3. Let M
be an operator which returns the local maxima of a function. M
is applied one, two, or three times respectively on Eavg,1, Eavg,2.
Eavg,3 to obtain three sets of local maxima:

m1 = M(Eavg,1(f)),

m2 = M(M(Eavg,2(f))), (4)

m3 = M(M(M(Eavg,3(f)))).

This approach is justified by the fact that the subband that contains
the major part of the energy is the lowest one: all the local peaks
associated to this subband are considered for the next step. Applying
two or three times the M operator respectively on the second and
third subband, allows to select only the most important peaks , by

deleting maxima given by noise or by irrelevant, short audio signal
components. The total number of selected prominent peaks is P =
|m1|+ |m2|+ |m3|.

Now, given a generic frequency bin fp on which an energy peak
p ∈ m1∪m2∪m3 has been detected, we select a narrow energy sub-
band around fp and we compute the total energy Sp(w) associated
to such subband over time:

Sp(w) =

B/2∑
b=−B/2

X̂(w, fp + b). (5)

In our framework, we have chosen B = 2. The set of the ex-
tracted energy lines can be considered a reduced version of spec-
trogram, which will be used, after morphological filtering [12], to
detect changes in spectral textures. Morphological filtering is ap-
plied to each function Sp(w) to emphasize energy steps. A similar
technique is used in [6] to emphasize the high-level structure of the
similarity matrix. We process each energy function using opening
and closing operators, as follows:

Ŝp(w) = γ7.5(φ3.5(Sp(w)) + φ7.5(Sp(w)) + φ25(Sp(w))). (6)

The subscripts on opening operator γ and on closing operators φ in-
dicate structuring elements of length respectively 3.5, 7.5, and 25
sec. Through morphological processing, algorithm tries to fill lo-
cal energy holes in energy textures. Different structuring element
lengths in closing filtering attempt to take into account different sizes
of texture, while applying opening filter on the sum of closed energy
functions removes filled areas with duration less than 7.5 sec.

To detect raising and falling points of each energy function

Ŝp(w), the first derivatives Ŝ
′
p(w) are computed. For each deriva-

tive a new function Hp(w) is computed as follows:

1. The functions
∣∣∣Ŝ′

p(w)
∣∣∣ and Hp(w) are equally subdivided

into non-overlapped windows Qp of 7.5 sec.

2. For each window Qp in Hp(w), a single non-zero element is

set at the centroid of the corresponding window in
∣∣∣Ŝ′

p(w)
∣∣∣,

with a magnitude equals to the area of
∣∣∣Ŝ′

p(Qp)
∣∣∣.

The functions Hp(w) contain isolated peaks that allows to better de-
tect the locations of slope changes in Sp(w). A segmentation func-
tion R(w) can be defined by summing together the Hp(w) functions
as follows:

R(w) =
∑
P

Hp(w) · cp, (7)

where cp = Eavg(fp). The function R(w) is then clipped by cutting
values greater than a threshold rc defined as follows:

rc = mean(R(w)) +
max(R(w))−mean(R(w))

3
. (8)

We call R̃(w) the clipped R(w) function. Now, finding the segment
boundaries is a simple matter of selecting the peaks in the segmenta-
tion function R̃(w). The approach used here is based on the follow-
ing steps:

1. The mean value of R̃(w), called R̃avg , is used as threshold
to generate two other functions, A(w) and U(w), defined as
follows:

A(w) =

{
R̃(w) if R̃(w) > R̃avg

0 if R̃(w) ≤ R̃avg
(9)

U(w) =

{
R̃(w) if R̃(w) < R̃avg

0 if R̃(w) ≥ R̃avg
(10)
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2. A(w) and U(w) are divided into non-overlapped windows of
3.5 sec. For each window Q the position wA

z and wU
z of two

boundary candidates are computed respectively from A(w)
and U(w) as follows:

wA
z =

∑
Q A(w) · w∑

Q A(w)
, wU

z =

∑
Q U(w) · w∑

Q U(w)
(11)

A boundary score corresponding to the sum of values of the
related A(w) or U(w) function into the corresponding win-
dow Q is given to each boundary candidate.

3. All the boundary candidates computed using the function
A(w) are taken.

4. Candidate boundaries computed from U(w) are taken only if
they are at a distance greater than 4 secs from all the candidate
boundaries computed from A(w), and, at the same time, if

their score values are greater than R̃avg threshold.

At the end, we have a set Z of boundaries which gives a first
segmentation of the musical audio track.

4. SEGMENTATION REFINEMENT THROUGH TIMBRIC
AND TONAL ANALYSIS

The first phase returns a coarse segmentation that presents impreci-
sions in locating boundaries. Moreover, in the first phase we use an
approach which tends to over-segment the music track: this choice
has been taken to avoid to irretrievably skip important semantic seg-
ments.

The problem of imprecise positioning of boundaries depends on
the structure of the spectral energy texture, that may not have clear
time limits, and on the morphological filtering, that tends to shift
such limits due to opening and closing operations; moreover, the tra-
jectories do not raise or fall like a step function but with a variable
slope in different subbands, indeed the first derivatives return multi-
ple values around structural changes.

The problem of over-segmentation is solved by deleting short
segments and by merging adjacent similar semantic segments, in
terms of timbric and tonal characteristics.

The timbric and tonal features used in our framework are listed
in Table 1. For the computation of Audio Spectral Envelope coeffi-

Feature Type Features Ref.

Spectral 25 Audio Spectral En-
velope coefficients

[13]

Perceptual first 36 MFCCs [13]

Tonal 12-bin chromagram [5]

Table 1: Audio features used in our framework to perform boundary
repositioning and segment merging.

cients, we have used a frequency band defined between 55 Hz and
5000 Hz, with a resolution of 0.25 octaves. MFCCs have been com-
puted using 36 Mel filters.

4.1. Local novelty analysis for boundary repositioning, and
elimination of short segments

For each boundary z ∈ Z at position wz we consider a 14 sec. rect-
angular window centered on the boundary. We subdivide the window
into 0.5 sec frames, with an overlap of 50%. For each frame, a set

of timbric and tonal features, as given in Table 1, is extracted. At
the end of the extraction process, a matrix Vz of feature vectors vz,k

is available for each boundary. Then, using the approach described
in [4] a self-similarity matrix and a novelty function is computed
for each window. The self-similarity matrix measures the similarity
between each couple of feature vectors (vz,j , vz,k) using the cosine
distance defined as follows:

DC(j, k) =
vz,j · vz,k

‖vz,j‖ ‖vz,k‖ . (12)

The audio novelty function is computed correlating a Gaussian
checkerboard kernel matrix along the main diagonal of the self-
similarity matrix. As in [4], we use a smooth checkerboard kernel
built using a radially-symmetric Gaussian function to avoid edge
effects. The kernel size is 64 × 64, and, to build the smoothing
Gaussian function, we used δ = 24.
Each boundary is repositioned into the related window where the
global maximum of the novelty function is detected.

In this phase we delete also segments shorter than 5.5 sec. To
choose the boundary to delete (the left or the right boundary of the
short segment), we compare the values of the scores assigned to the
boundaries: the boundary with the lower score is deleted.

At the end, we have a refined set Ẑ of boundaries.

4.2. Inter-segment similarity analysis for final segment merging

In the third phase we make use of tonal and timbric similarity to
merge similar adjacent segments. The segment comparison is per-
formed by computing self-similarity matrices over per-segment av-
erage feature vectors. In particular, for each segment, an average
feature vector is computed; then, the average vector is decomposed
in three parts corresponding to the three different feature spaces (Au-
dio Spectral Envelope, MFCC, Chromagram). For each part, a self-
similarity matrix is computed. At the end of the process we have
three self-similarity matrices DASE (Audio Spectral Envelope do-
main), DMFCC (MFCC domain), DChroma (Chromagram domain)
that give information about intra-segment similarity using the three
feature spaces separately. Based on work in [11] we use the larger
terms in the SVD-based decomposition of such intra-segment sim-
ilarity matrices to define clusters of similar segments. In our ap-
proach, we use this type of analysis to determinate the number of
segment clusters. To evaluate the C larger terms in the SVD-based
decomposition we use the following formula, computed on singular
values λi of the diagonal matrix Λ:

I(C) =

C∑
i=1

λi/

|Ẑ|∑
j=1

λj . (13)

∣∣∣Ẑ
∣∣∣ is the total number of segments given from the second phase

(and thus, it is the total number of elements on the main diagonal of
Λ). We estimate the number of singular values C needed to make
the value of I(C) ≈ 80%. Knowing C, which is the number of seg-

ment clusters we are considering, we select the greater
∣∣∣Ẑ

∣∣∣−C local

maxima in the actual inter-segment similarity matrix: this allow us to
identificate couples of similar segments. Interconnected couples (i.e.
that have a common segment) are clustered together. In particular, if
two consecutive segments are positioned in the same cluster for all
the three different feature domains, the boundary between them is
removed.

At the end of the third phase, the final set of boundaries Z̄ is
returned.
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5. EXPERIMENTAL RESULTS

We have conducted experimental tests on a heterogeneous audio
database which consist of 58 songs from different music genres
(rock, pop, world music, hard rock, punk, metal, ballad, electronic,
hip hop). Each song has been converted from its original format to
a 11025 Hz, 8 bit, mono-channel audio track. Results are evaluated
using a ground truth segmentation, manually generated. For bound-
ary evaluation we adopt the two metrics of Precision and Recall
respectively computed as:

Precision =
# correctly detected boundaries

# total detected boundaries
(14)

Recall =
# correctly detected boundaries

# ground truth boundaries
(15)

To evaluate the correctness for boundary positioning, we consider a
tolerance deviation of ±2 sec from the ground truth boundary. As

Phase 1 Phase 2 Phase 3
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0.6

0.8

1

Precision
Recall

Fig. 1: Precision and recall results for the three phases

required, the first phase returns a over-segmentation in order to work
with a set of candidate boundaries in which is present the subset of
ground truth boundaries. As shown in Figure 1, this leads to a rela-
tively low level of precision equal to 64%, but allows to work with a
recall of 96%. From our results, the worst case of song recall is 83%
highlighting the good ability of the first phase to detect structural
changes. For the second phase, comparing the total positioning error
of the whole set of boundaries, before and after relocation of local
novelty, we observed an average error decrease of 88%. Also due to
cancellation of short segments, the precision increases to 79%. The
recall, instead, decreases to 93%. This means that a small number
of true semantic boundaries are deleted. The segment merging ap-
proach adopted in the third phase allows to reach a precision result
of 85%, while the recall decreases a bit and reaches a percentage of
92%. We have also conducted tests using lower time tolerances for
boundary positioning evaluation. As shown in Figure 2, we observe
modest reduction of precision and recall. With tolerance of 0.5 sec,
for the last phase we obtain a precision score of 75% and a recall of
80%.

6. CONCLUSIONS AND FUTURE WORKS

In this paper a novel three-stage algorithm to effectively perform
musical audio semantic segmentation has been proposed. In the first
stage only the energy spectrum is analyzed to find changes in spec-
tral energy texture, hence to detect a first set of semantic segments.
In the second and third stages a multi-feature approach allows to
refine the segmentation by moving or deleting segment boundaries.

2 1.5 1 0.5
0

0.2

0.4

0.6

0.8

1

Time tolerance (sec)

Precision
Recall

Fig. 2: Precision and recall values on the third phase, using different
time tolerances to evaluate the correctness of boundary positioning.

Our tests show good results of precision and recall for all the three
phases. Our future work will focus on using data computed in the
third phase to perform semantic segment labeling, i.e. to give to seg-
ments a semantic name (chorus, verse, intro...). It is also our inten-
tion to experiment the proposed algorithm in a real-world application
related to music recommendation field.
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