
A COLLABORATIVE BAYESIAN IMAGE RETRIEVAL FRAMEWORK

Rui Zhang, Ling Guan

Ryerson Multimedia Research Laboratory
Ryerson University, Toronto, Canada

{rzhang, lguan}@ee.ryerson.ca

ABSTRACT

In this paper, an image retrieval framework combining content-based
and content-free methods is proposed, which employs both short-
term relevance feedback (STRF) and long-term relevance feedback
(LTRF) as the means of user interaction. The STRF refers to iter-
ative query-specific model learning during a retrieval session, and
the LTRF is the estimation of a user history model from the past re-
trieval results approved by previous users. The framework is formu-
lated based on the Bayes’ theorem, in which the results from STRF
and LTRF play the roles of refining the likelihood and the a priori
information, respectively, and the images are ranked according to
the a posteriori probability. Since the estimation of the user history
model is based on the principle of collaborative filtering, the system
is referred to as a collaborative Bayesian image retrieval (CLBIR)
framework. To evaluate the effectiveness of the proposed frame-
work, nearest neighbor CLBIR (NN-CLBIR) and support vector ma-
chine active learning CLBIR (SVMAL-CLBIR) were implemented.
Experimental results showed the improvement over content-based
methods in terms of both accuracy and ranking due to the integra-
tion in the proposed framework.

Index Terms— image retrieval, Bayesian framework

1. INTRODUCTION

Ever-lasting growth of multimedia information has been witnessed
and experienced by human beings since the beginning of the infor-
mation era. An immediate challenge resulting from the information
explosion is how to intelligently manage and enjoy the multimedia
databases. Content-based image retrieval (CBIR) has been inten-
sively studied for more than a decade, yet still remaining a chal-
lenging topic [1]. Conventional CBIR systems exploiting global
low-level features have proven effective to the extent of pre-attentive
similarity due to the semantic gap. Noticing the critical role of hu-
man beings in recognizing semantic content in multimedia objects,
relevance feedback (RF) was applied to CBIR. Modern techniques
approach RF by approximating a function consistent with human vi-
sual perception [2–4], resulting in significant improvement. We refer
to these RF techniques as short-term relevance feedback (STRF) as
they are terminated once a user is satisfied by the results or gives up
the query. On the other hand, we believe that a successful retrieval
system should be capable of learning a history model of the vast
majority of the users from the past retrieval results since they con-
tain valuable semantic information which may improve the database-
wide semantic indexing. We refer to the technique of learning a user
history model as long-term relevance feedback (LTRF) because it

can be a life-long process involving human computer interaction.
In this paper, we propose a new image retrieval strategy, in

which the content-based and the content-free [5] methods are seam-
lessly integrated into a mathematically justifiable framework. User
interaction is carried out through the combination of STRF and
LTRF. We formulate the task based on the Bayes’ theorem, in which
the content-based similarity measure is considered as the likelihood
evaluation which can be updated using STRF and the probability
estimated using content-free approaches serves as the a priori in-
formation. The a posteriori probability is used to rank the images
in the database. For the likelihood evaluation, we adopted both
nearest-neighbor CBIR (NN-CBIR) and support vector machine ac-
tive learning CBIR (SVMAL-CBIR). As for the content-independent
component, we employed the MaxEnt-based CFIR. Numerical re-
sults demonstrated better performance than that of a simple content-
based system with only STRF. In addition, even if there is no user
history, the system can still function as the a priori distribution of
the images is just uniform, in which case, however, the CFIR fails
to work [6]. Since the a priori knowledge is extracted using a col-
laborative filtering technique, the proposed system is referred to as a
collaborative Bayesian image retrieval (CLBIR) framework.

2. THE PROPOSED FRAMEWORK

Let a query be represented using a vector xq , where xq ∈ Rd. The
goal of the framework is to rank the candidate images using the the
a posteriori probability P (ω|xq, I), where ω ∈ W is the index of
an image in a database, W ={1, 2, . . . , N}, N is the number of im-
ages, and I is the background information. According to the Bayes’
theorem, the a posteriori probability of an image given a query can
be written as

P (ω|xq, I) ∝ p(xq|ω, I)P (ω|I), (1)

with the equality replaced by the proportionality due to the fact that
the probability density function (PDF) of the observation xq is a
normalization constant given different ω. In the CLBIR framework,
I = {Iq,1, Iq,2, . . . , Iq,Q} is a set of the indexes of query images,
where Iq,i ∈ W , i = 1, 2, . . . , Q, and Q is the number of query
images. When 1 < Q � N , xq = 1

Q

∑Q
i=1 xq,i, where xq,i ∈

Rd is the feature vector of the query image Iq,i. According to the
interpretation of I , (1) can be simplified as

P (ω|xq, I) ∝ p(xq|ω)P (ω|I). (2)

Based on (2), the information utilized for ranking candidate im-
ages consists of the similarity measure based on visual content and
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Fig. 1: The block diagram of the CLBIR framework.

past human judgement, i.e. past retrieval results approved by human
users, corresponding to the likelihood evaluation and the a priori
probability calculation. The block diagram of the proposed frame-
work is illustrated in Fig. 1, in which the solid and dashed directed
lines indicate the information flow and the human-controlled com-
ponents, respectively. The STRF is employed to refine the content-
based likelihood evaluation, whereas the LTRF is used to upgrade
the statistical model characterizing the past retrieval history. Each
retrieval session is composed of a number of STRF iterations and
the LTRF is performed incrementally whenever a certain amount of
new retrieval results are accumulated.

2.1. Content-based Likelihood Evaluation and STRF

2.1.1. Content-based Analysis Using NN-CBIR

The mechanism of NN-CBIR is to return the top K images on the
list, which is ranked based on the similarity measure between the
feature of the query and that of each of the candidate images, where
K � N . In our framework, the L1-Norm is used as the distance
function. For STRF, the query is refined using the method of query
point movement. To calculate the likelihood, we employ the expo-
nential function to convert the L1-Norm into a similarity function in
order to approximate the likelihood in (2), i.e.

p(xq|ω) =
1

A
e−|xq−xω|, (3)

where A =
∫

e−|xq−xω| is the normalization constant.

2.1.2. Content-based Analysis Using SVMAL-CBIR

SVM is a powerful tool for pattern recognition because it max-
imizes the minimum distance between the decision hyperplane
and the training samples so as to minimize the generalization er-
ror. Given training samples {(x1, y1), (x2, y2), . . . , (xT , yT )},
where xi ∈Rd, yi ∈{−1, 1} is the ground-truth label of xi, and
i ∈ {1, 2, . . . , T}, the optimal hyperplane can be represented as
f(x)=

∑T
i=1 αiyiK(xi, x)+b where K(xi, x) is the kernel func-

tion, αi is the Lagrangian multiplier, and b is the bias. Due to the
sparse sample problem of the RF in CBIR, the philosophy of active
learning was introduced into the human-machine interaction, where
the most informative images are shown to request user-provided

labeling, resulting in the SVMAL-CBIR [4]. Since the output of an
SVM with respect to a sample is the oriented distance from the sam-
ple to the hyperplane, the value could be either positive or negative.
Therefore, the exponential function is employed again to convert
the value of the discriminant function. When selecting radial basis
functions as the kernel, we obtain

p(xq|ω) =
1

A
e

∑T
i=1 αiyi exp

−||xi−xq||2
λ

+b, (4)

where A=
∫

e
∑T

i=1 αiyi exp
−||xi−xq||2

λ
+b is the normalization con-

stant.

2.2. Content-free Analysis for Calculating the A Priori Proba-
bility and LTRF

The objective of the content-free analysis is to calculate the proba-
bility of a candidate image as a relevant one given a query, which is
expressed as P (ω|I). First, we model each candidate image using a
binary random variable Yν , where ν ∈ W . Yν has two states, with
the state of Yν = 1 indicating that the νth image is relevant and
Yν = 0 otherwise. Second, we model the query images using a set
of binary random variables YJ , where J ⊂W . Each element in YJ

also has two states, with the state of 1 indicating that the query image
contains the semantic meaning in the user’s information need and 0
otherwise. In what follows, we are only dealing with the probability
of a variable with the state of being 1 without explicit representa-
tion, unless stated otherwise. Then, we estimate P (Yν |YJ) using
the MaxEnt approach [7], where ν ∈ J̄ , which are finally used to
approximate the P (ω|I).

The MaxEnt can be used to estimate the conditional probabil-
ity P (Y H |Y E), where Y H={YH,1, YH,2, . . . , YH,M} and Y E=
{YE,1, YE,2, . . . , YE,K} are referred to as the hidden set and the ev-
idence set, and M and K are the respective sizes of Y H and Y E .
Since the goal is to calculate P (YH,h|Y E), i.e. the probability of
each hidden variable conditional on the evidence set, marginalization
is needed, which can be rather computationally consuming given
a large hidden set. Assuming the statistical independence across
the hidden variables, the P (YH,h|Y E) can be directly estimated by
solving the following optimizations:

max
Ph|E∈[0,1]

−
∑

yH,h,yE

P̂ (yE)P 2
h|E (5)

subject to∑
yE

P̂ (yE)Ph|EfE,k

P̂ (fE,k)
= P̂ (fH,h|fE,k),

where k ∈ {0, 1, . . . , K}, yH,h, yE,k ∈ {0, 1} represent the states
of the hidden and evidence variables, and the fH,h and fE,k are
hidden and evidence feature functions defined as fH,h = yH,h and
fE,k = yE,k if k �= 1 and fE,k = 1 if k = 0, respectively. The
optimization in (5) with respect to the conditional probabilities of
the hidden variables can be carried out in parallel through matrix
computation, which is referred to as the inverse probability method
(IPM) [7]. The closed form solution to the optimization is

PH|E = PFH|E × PF−1
E|E × fE , (6)

where

PH|E = [P̂ (XH,1|xE), P̂ (XH,2|xE), . . . , P̂ (XH,M |xE)]T ,
(7)
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PFH|E (8)

=

⎛
⎜⎝

P̂ (fH,1) P̂ (fH,1|fE,1) . . . P̂ (fH,1|fE,K)
...

...
. . .

...
P̂ (fH,M ) P̂ (fH,M |fE,1) . . . P̂ (fH,M |fE,K)

⎞
⎟⎠ ,

PFE|E (9)

=

⎛
⎜⎜⎜⎝

1 1 . . . 1

P̂ (fE,1) 1 . . . P̂ (fE,1|fE,K)
...

...
. . .

...
P̂ (fE,K) P̂ (fE,K |fE,1) . . . 1

⎞
⎟⎟⎟⎠ ,

and
fE = [fE,0(xE), fE,1(xE), . . . , fE,K(xE)]T . (10)

In the case under our consideration, Y E = YJ represents query
images and Y H is composed of the Yν ’s corresponding to the can-
didate images. Therefore, the conditional probabilities we are esti-
mating can be written as

P (Yν |YJ) =

{
P (YH,h|Y E), ν ∈ J̄

1, ν ∈ J
, (11)

where h ∈ W /J . With the above results we can approximate the
P (ω|I) using

P (ω|I) = P (Yω|YJ)/
W∑

ν=1

P (Yν |YJ). (12)

When a certain amount of new retrieval results have been accu-
mulated since the completion of the last update of the user history
model, a new iteration of LTRF will be carried out using an incre-
mental update procedure [6], by which the efficiency can be consid-
erably raised, which is the amount of time needed for the refinement
of the user history model.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

To guarantee the diversified image content, which is a typical sit-
uation of image retrieval in a large general domain, we randomly
selected 200 classes from the COREL image collection, with 50
images in each class. The resultant 10000 images and the vendor-
defined categories were used as the database and the ground truth for
evaluating the performance. From the database, 10 queries were se-
lected from each of the 200 classes, resulting in 2000 queries, each
of which is composed of two different images. Under the query-
by-example retrieval paradigm, the average of the features of the
two images was used as the feature of each query. The queries
were further divided into three mutually exclusive subsets, denoted
by TA, TB,1, and TB,2, where |TA| = 1000, |TB,1| = 400, and
|TB,2| = 600 are the respective sizes of the subsets. We employed
global color histogram in Hue-Saturation-Value (HSV) space, color
layout in YCbCr space and Gabor wavelet as low-level features. The
experimental procedure is summarized as follows.

1) TA was used when the user history model was not avail-
able, i.e. before LTRF happens. In such a case, only STRF is in-
volved, and the NN-CLBIR and the SVMAL-CLBIR are essentially

the same as the NN-CBIR and SVMAL-CBIR because the a priori
distribution of the candidate images is uniform. The retrieval results
corresponding to TA were used to perform the initial LTRF.

2) After the initial LTRF, the CLBIR systems are expected to
present better performance thanks to the accumulated high-level
knowledge characterized by the user history model, while the STRF
still improves the results with respect to each specific query. TB,1

was used to demonstrate the performance improvement.

3) During the operation of the CLBIR systems, the new retrieval
results after a certain LTRF are gradually accumulated until the next
LTRF is carried out. In our experiments, the retrieval results corre-
sponding to TB,1 were used to perform the second LTRF, i.e. an
incremental update of the system. To show the effectiveness of
the incremental update, the performance was evaluated using TB,2.
Since the query subsets are mutually exclusive, we guaranteed that
the trained system using LTRF were tested based on previously un-
seen samples.

3.2. Numerical Results

Shown in Fig. 2(b) is the comparison between NN-CBIR and NN-
CLBIR in terms of the average precision Pavg as a function of the
number of iterations of STRF, where the precision is defined as P =
NC
NR

, where NC and NR are the numbers of relevant images and re-
trieved images, respectively. We adopted NR = 48 in this case.
First, using query set TB,1, the improvement due to the initial LTRF
which was based on the retrieval results corresponding to TA can
be observed, showing the ability of the CLBIR systems to utilize
the past retrieval results. Meanwhile, the improvement resulting
from STRF can also be observed, which is shared by both CBIR
and CLBIR systems. Second, after the second LTRF, the perfor-
mance of NN-CLBIR using query set TB,2 is further enhanced re-
sulting from more accumulated knowledge through LTRF. Based on
the same query set, the performance of NN-CBIR remains similar.
To test the performance in terms of ranking ability, we employed the
precision-versus-recall curve (PRC), where the recall is defined as
R = NC

NG
, where NG is the number of images in the same semantic

class as that of the query. The precision is averaged over all queries
at each different recall value. The PRC after the initial retrieval was
shown in Fig. 2(a). Higher precision value at a certain recall indi-
cates more relevant images being ranked ahead of irrelevant ones,
i.e. to reach the recall value, a smaller set of retrieved images has to
be gone through. Based on this fact, the advantage of the integration
of user history as high-level knowledge with the content analysis can
be demonstrated based on the comparison in Fig. 2(a).

The comparison shown in Fig. 2(c) and Fig. 2(d) is for the
same purpose of performance evaluation as that described above,
and the difference lies with the approach to the content analysis for
the likelihood computation, which is based on the output of the SVM
employed for active learning-based STRF. In this case, we adopted
NR = 20 for the evaluation of precision as a function of the num-
ber of STRF iteration, and NG = 50 for the evaluation of PRC.
Since the initial retrieval is just random ranking, the precision was
evaluated starting from the first STRF iteration. Still, we can observe
the improvement resulting from the integration through the Bayesian
framework.
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Fig. 2: Objective evaluation on the performance improvement re-
sulting from the proposed approach. a) and c) Comparison in terms
of the PRC after the first retrieval iteration. b) and d) Comparison in
terms of the precision as a function of the number of RF iterations.

3.3. Subjective Evaluation

An interface with the NN-CLBIR enabled has been implemented to
demonstrate the effectiveness of the proposed framework in terms
of performance improvement by the accumulation of user history.
Illustrated in Fig. 3(a) and Fig. 3(b) are the top 20 retrieved images
using NN-CLBIR. Shown in the upper figure is the result obtained
using a system, whose a priori knowledge was extracted from 1000
past retrieval results, while in the lower one, the result is based on
the a priori knowledge learned from 1400 past retrieval results. The
query is selected from the semantic class of the theme soldier, and
the last 4 images do not belong to this class in Fig. 3(a). Nonetheless,
all of the top 20 images are relevant to the query in Fig. 3(b).

4. CONCLUSION

The integration of content-based and content-free methods for image
retrieval is studied in this paper, which is formulated based on the
Bayes’s theorem. It employs STRF and LTRF for human machine
interaction, which refines the query formulation and incrementally
learns a user history model based on past retrieval results, respec-
tively. The resulting framework can be considered as a CBIR sys-
tem with memory. Moreover, it does not suffer from the cold start
problem of CFIR. Two particular instances of the proposed frame-
work has been implemented for experimental evaluation. Simula-
tion results demonstrated the effectiveness of the combination of the
content-based and content-free information, which include the im-
provement resulting from learning a user history model based on
more accumulated knowledge, i.e. LTRF, and that by STRF during
a retrieval session. Future work will be focused on seeking a more
accurate approach to estimating the user history model.

(a) Based on the user history model trained using 1000 past retrieval
results.

(b) Based on the user history model trained using 1400 past retrieval
results.

Fig. 3: Retrieval results for subjective evaluation on the performance
improvement resulting from more user history.
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