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ABSTRACT

In real imaging system, the observed image is usually 
corrupted by blurring, spatial degradations. The classical 
recognition methods in degraded image analysis are to 
obtain blur invariants based on geometric moments or 
complex moments. In this paper, we introduce blur 
invariants based on Zernike moments which are orthogonal 
over a unit circle. Both the expression of Zernike moments 
of blurred image and the set of blur invariants based on 
Zernike moments are presented and proved mathematically. 
Compared with the pattern classification results of complex 
moments, the experimental results of Zernike moment 
demonstrate that the proposed method performs well in 
object and pattern recognition.

Index Terms— Zernike moments, radial moments, blur 
invariants, pattern recognition, classification.

1. INTRODUCTION 

Since real imaging systems are usually imperfect, the 
observed image presents only a degraded version of the 
original scene, which makes the processing and recognition 
of images challenging. Applying a set of moment invariants 
with respect to blurring will be useful to solve this problem. 
Traditional methods for obtaining blur invariants are 
commonly based on geometric central moments or complex 
moments. Jan Flusser and Tomas Suk first introduced the 
blur, and combined blur and affine moment invariants based 
on geometric central moments [1-2]. In [3], a set of rotation, 
scale, translation and blur invariants based on complex 
moments were introduced. However, the kernel functions of 
central moments and complex moments are not orthogonal. 
It is proven that these moments suffer from high redundancy 
and overlap between moments of different orders [4]. In [5], 
Teague suggested the Zernike moments based on orthogonal 
Zernike polynomials to overcome these problems. Zernike 
moments have a simple rotation property due to its 
separable nature of angular dependence [4], and its 
translation invariants have been reported in [6]. However, 
its blur invariants have not been introduced until now. 

In this paper, a novel blur invariants set based on the 
Zernike moments has been proposed. We give a detailed 
derivation for obtaining this set. The experimental results 

demonstrate that the proposed method performs well in 
pattern classification tasks. 

2. MATHEMATICAL BACKGROUND 

2.1. Definition of image blurring 

Let f(x, y) be an original image function and h(x, y) be the 
point spread function (PSF). The blurred image can be 
described by the convolution as  

( , ) ( , ) ( , )g x y f x y h x y                      (1)
Here,

2
( , ) 1

R
h x y dxdy

The equation of a Gaussian PSF in two dimensions is 
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2.2. Zernike moment 

The two-dimensional Zernike moments of an image 
intensity function ( , )f r are defined as follows: 
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where Zernike polynomials of order p with repetition q
(q=0, 1, 2,K  ), and ( , )pqV r  is defined as 

( , ) ( ) jq
pq pqV r R r e                             (4) 

radial polynomial is given as  
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where 0 q p and p q even .
Due to the symmetry property of Zernike polynomials, 
,p qZ has same property as pqZ . For simplification, only q>0

will be considered in this study. The relationship between 
Zernike moments Zpq and radial moments pqD  are given as 
follows [7] 
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The radial central moment pqD is defined as follows 
( )/2
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0 0[( ) ( )] ( , )p qx x j y y f x y dxdy        (8) 

where p-q=even.

3. BLUR INVARIANTS OF ZERNIKE MOMENTS 

In this section, the blur property of Zernike moments is 
investigated. Theorem 1 gives the Zernike moments of 
degraded image. 

Theorem 1. The blurred image g(x, y) is derived from the 
convolution image f(x, y) with PSF. The expression of g

pqZ

is
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The proof is deferred to Appendix A. On the assumption 
that PSF h(x, y) is Gaussian PSF, we derive the set of blur 
invariants of Zernike moments by virtue of Eq.(9) and 
present it as Theorem 2. 

Theorem 2. Zernike moment pqZ (the subscript p = q) are 
not affected by Gaussian blurring. (For proof of Theorem 2, 
see Appendix B). 

Here, a set of blur invariants from zero order to fourth 
order is listed below:  

1 00
fZ 2 1, 1

fZ 3 2, 2
fZ 4 3, 3

fZ 5 4, 4
fZ 6 55, fZ

From the above invariants we can see that Zernike 
moment easily becomes invariant under blurring. 

4. EXPERIMENT RESULT 

In this section, the experiment is carried out to evaluate 
the proposed Zernike blur invariants. The five original 
images (size 100×100) used in the experiment are from 
Columbia object image database [8]. Each image is blurred 
by Gaussian blur with a 5×5 vector under the condition of 
different standard deviation . The original images are 
shown in Fig.1 and the images blurred by Gaussian blur 
with =5.0 are shown in Fig.2 as examples. In Table 1 we 
list the invariants 1 2 6, ... of the original image Fig.1 (a), 
Fig.1 (b) and their blurred images, respectively. From the 
data in Table 1, one can see that 1 2 6, ... remain invariant 
with respect to different standard deviation .

The second experiment provides the experimental study 
on the classification accuracy of Zernike moments and 
complex moments under blurring. In our recognition task 
we use the following feature vector

1 2 3 4 5 6[ , , , , , ]V
2 3 2 3 4
30 02 30 02 04 12' [Re( ), Im( ),Re( ),V C C C C C C

4 2
04 12 40 02 40 04Im( ), Re , ]C C C C C C

where the elements in vector V’ are the blur invariant with 
respect to rotation and blurring based on complex moments 
[3]. Euclidean distance d is used as the classification 
measure and is defined by 

                         (10) ( ) 2
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where Vs is the T-dimensional feature vector of unknown 
sample, and is the training vector of class k. And the 
classification accuracy 

( )k
tV

is defined as 
Number of correctly classified images 100%

The total number of images used in the test
   (11) 

The test set comprises of 240 images, which are 
generated by Gaussian blur under {0.5,1,5,8,10} and

rotation with { , , ,
6 3 2

} . Fig.3 shows some of the 

testing images. The recognition accuracy of Zernike 
moments and complex moments are compared in Table 2. 

(a)               (b)                (c)               (d)              (e)
Fig. 1. The original images 

(a)              (b)                 (c)                (d)             (e) 
Fig. 2. Blurred images by Gaussian blur with =5.0

Table 1. Moment invariants of the blurred images of Fig.1 
(a) and Fig.2 (b) under Gaussian blur with different .

Original =0.5 =1 =5

1 65.872 65.959 65.963 66.022

2 -5.5585 -5.6102 -5.6119 -5.639

3 -1.8174 -1.8584 -1.8605 -1.8822

4 9.3883 9.4688 9.4699 9.5058

5 1.9688 1.9702 1.9704 1.9748

Fig.1(a)

6 -3.0092 -2.9526 -2.9502 -2.9196

1 84.538 84.511 84.46 84.37

2 86.307 86.275 86.182 85.999

3 99.291 99.255 99.129 98.815

4 79.318 79.301 79.377 79.597

5 103.09 103.04 102.83 102.28

Fig.1(b)

6 96.818 96.76 96.451 95.627
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Fig. 3 part of the test images in the test set. 

Table 2. Classification results of the blurred and rotated 
images. 

standard deviation 
=0.5 =1 =2 =5 =10

Complex 95.3% 94.67% 94.33% 93.75% 93.32%

Zernike 98.17% 97.77% 96.92% 96.58% 95.41%

From Table 2, one can see that both the invariants based 
on Zernike moments and complex moments remain stable 
with the increase of standard deviation . However, the 
novel method performs better than the invariants based on 
complex moments in recognition of rotated and blurred 
images. 

5. CONCLUSION 

In this paper, we have introduced the blur invariants of 
Zernike moments for recognizing and classifying blur 
objects. This method eliminates the requirement of 
deblurring and normalization of recognition tasks. The 
results of simulation have illustrated that the invariant 
capability of the proposed invariants has advantages over 
the other similar ones. In the future work, the application of 
the method will be investigated with the images of 
complicated backgrounds and the comparison with Zernike 
moments and other orthogonal moments in degraded image 
analysis will be made. 

APPENDIX A. PROOF OF THEORM 1 

The derivation of Zernike moments of the blurred image 
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APPENDIX B. PROOF OF THEORM 2 

The expression g
pqZ  of image f(x, y) after convolution 

with PSF is given in (A.3). If p=q, from (A.3), we get
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where
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substitute (B.3) and (B.4)into (B.2), we get 
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And, 00
hZ = 000 00

1 hB D
1 .

Therefore, when p=q, p m , .
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