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ABSTRACT

This investigation proposes an SVM-based state transition
framework (named as STSVM) to provide better
performance of discriminability for human behavior
identification. The STSVM consists of several state support
vector machines (SSVM) and a state transition probability
model (STPM). The intra-structure information and inter-
structure information of a human activity are analyzed and
correlated by the SSVM and STPM, respectively. The
integration of the SSVM and the STPM effectively provides
human behavior understanding. With a database consisting
of five kinds of human behaviors: raising hand, standing up,
squatting down, falling down, and sitting, the proposed
algorithm has been demonstrated with a significant
recognition rate of 88.6%.

Index Terms: Image processing, pattern recognition, user
interface human factors

1. INTRODUCTION

Ambient intelligence environments allow people to
friendly access information for interaction between users and
devices. Human behavior identification is a core technique
for ambient intelligent applications. In [1-4], model-based
methods are used to achieve the goal of human behavior
identification. To construct the behavior model, a human
body would be divided into several parts to define poses and
to capture human motions, etc. Meaningful human activities
could further be detected with different combination of
poses or motions.

To overcome the problem of tracking lost, two related
research works respectively using model-based and HMM-
based approaches have been proposed. Bregler [5] proposed
a probabilistic decomposition of human dynamics at
multiple abstractions, such as level of input image sequence,
coherence blob hypotheses, simple dynamical categories,
and complex movement sequences. The state space of the
dynamical systems is constructed by correct definition of
blob hypothesis and the translation and angular velocities of
the blob hypothesis. In literature [6], coupled HMM is
proposed for dynamic and complex action recognition. More
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states are adopted in the coupled HMM to enhance the
ability for complex action recognition. However, it is
difficult to propose an algorithm to decompose a human
body into human body parts with motion, color, and spatial
support region, etc. Moreovers, Yamato et al. [7] proposed a
HMM-based behavior recognition model without geometric
representation of the human body. The authors adopted
mesh feature instead. Although the mesh features could be
successfully applied to complex 2D patterns, some
significant features like skin color and face characters would
be ignored in the recognition process.

In this paper, the STSVM to identify significant human
activities is proposed. The STSVM consists of several states,
each of which is constructed by a single support vector
machine (SVM), called State SVM (SSVM). Morphological
(intra-structure) information of each body silhouette can be
fed into the SSVM to evaluate its likelihood belonging to
this state. Motion (inter-structure) information of a temporal
silhouette sequence can be exploited to model the
correlations among states by the state transition probability
model (STPM). Hence, the presented STSVM has not only
the property of static shape-based classification, but also
dynamic correlation-based classification. Another main
advantage of the STSVM is the ability to deal with the time-
varying characteristics of a human behavior with the
property of state transition.
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Fig. 1. Block diagram of the proposed framework
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The block diagram of the proposed framework is shown
in Fig. 1. The process begins with the camera image
processing module (CIP Module) with motion segmentation,
morphological filtering, and normalization procedure
techniques. A person’s silhouette sequence is extracted by
the CIP module as inputs for the human behavior
identification module (HBI Module), including MRF-based
transition probability matrix, STSVM, and optimal path
tracking procedure. The input human behavior is then
determined using competitive model among different HBI
modules.

2. METHODOLOGY

Tracking and analyzing human motion changes is a key
technique for identification of behavior, however, it is very
challenging to match an unknown silhouette sequence with a
series of labeled reference sequences representing significant
behaviors. For the purpose, STSVM consisting of SSVMs
and the STPM is proposed in this study. The STSVM
assumes the person’s silhouette sequence of a human
behavior is composed of several successively distinct states.
We model each state by an individual 2-class SVM (called
SSVM) trained by behavior state class and the competitive
class. The competitive class is built by collecting a large
number of various video events. The state transition of the
STSVM is illustrated in Fig. 2.
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Fig. 2. Tllustration of the proposed framework: (a) the state
transition model for human behavior identification; (b) a
state transition trellis generated from a video sequence.

As different human behaviors often sharing similar parts,
the discriminability among them will decrease by using a
fully connected state transition model. According to our
experimental results, the fully connected model actually
improves the recall rate, but decreases the precision rate.
Considering the trade-off between flexibility and
discriminability, eventually, the left-to-right model is
adopted in this study. Figures 2(a) and 2(b) show that a state
transition of our model possibly happens from state i to state
J, while j = i, i+1, and i+2. Furthermore, we let the model
begin and terminate at the first and the last state,
respectively.

Based on the intra-structure information of an input
person’s silhouette, all the SSVMs generate the
corresponding state probabilities. With the state probabilities
and the MRF-based state transition probabilities, an optimal
path with maximum accumulated probability can be decided.
We construct the STSVM for each human behavior and
choose the human behavior with highest accumulated
probability as the identification result.

In the following, we address on how to compute the state
probabilities and the state transition probabilities,
respectively.

A. Generation of the State Probabilities

Assume the state number is Ny, and the input person’s
silhouette number is T. Denote I = { f; },t=1,2, ..., T, as
the feature sequence, i.e. the input person’s silhouette
sequence and represent @ = { ¢, }, ¢ =1, 2, ..., T, as a state
sequence for feature sequence I. The state probability
B={Pr(f |g)}>i=1,2 ..y Ny t = 1,2, ..., T, is
generated by transforming conventional SVM output into a
probabilistic score [8]. The following describes how to
compute the probabilistic scores. Denote the human
behavior class and the competitive class in i-th state as C;,,,
where m = +1 and -1, respectively. For an input person’s
silhouette ft classified into Cj., m e {~1,+1}, the distance

ratio of the distance between f; and optimal hyperplane to the
margin distance is defined by

R(f’):wf,+b/1zwf’+b, (1)
Wl / Iwl

The probabilistic score is then obtained by converting the
distance ratio to a value between 0 and +1 through a sigmoid
function

Ci,m=+]) = # : (2)

Pr(f, | ¢,) = Score(f, 3o

B. Generation of the State Transition Probabilities

Denote A = { a; } as the state transition probability from
state g; to state g;. Recall that the method of Hidden Markov
Model (HMM) uses only occurrence counting of person’s
contours in calculating transition probability. This strategy is
not always the most effective. For examples, there exist p
person’s contours in an unknown human action. We make
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assumption the p person’s contours to belong one of three
categories labeled p;;, where i = 1,2, ...,p and j = 1,2,3. In
general, the transition probability aii would be much greater
than a; (i#). If more effective methods are used, the
resulting transition probability calculation may perform
better than the occurrence counting. In this investigation, we
adopt the Markov random field (MRF) [9-10] to estimate the
relationship (each a; in A). The idea behind this method is
as follows. Given a set of condition probability distributions
which describe the probability distribution of a random
variable (representing a person’s contour) while the
probability distributions of neighbor random variables

(representing each two adjacent person’s contours) are given,

we then can represent the joint probability distribution (also
called transition probability a;) of each pair of random
variables. For instance, in Fig. 3, the MRF-based transition
probability a,; (between the second and the third person’s
contours) is greater than a,s. It is also more reasonable in the
real world if the second person’s contour is followed by the
third person’s contour than followed by the fifth person’s
contour for a hand raising event.

e

Fig. 3. An example of a person’s silhouette sequence for
raising hand behavior.
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Fig. 4. Illustration of two localized contour sequences
generated by the LCS approach. (a),(b): original images;
(c),(d): the contour information of (a) and (b); (e),(f): the
localized contour sequences of (¢) and (d).

We model each transition probability aij with MRF-based
inter-structure information of consecutive silhouettes. The
state transition probability a; can be represented in formula

(3) for all pairs of two successive f; and f;; which belongs to
state 7 and state j as

ij Z Hw( f/ l+l (3)
Jig4i.finEd;
and the potential function ¢(x i) is defined as below
- Dm t»fr+
olx;, ;) =e P, “)

where D, (f, f.+;) denotes the difference between two
consecutive person’s contours represented by the localized
contour sequence (LCS) [11]. This distance is calculated by

Dm (.f;’f‘t+l) = Z‘lcsx (k) - ZCSH-I(

where Ics, denotes the i-th input silhouette of a test behavior,
lcs,.; represents a circular shift of m samples in /lcs,.;. The
best match between Icst and Ics;+; is given by

D —mm (D, (f., f..D]- (6)

m

,m=0,,...(L-1),5)

Figure 4 presents an illustration of the adopted LCS
approach to extract the contour information.

Furthermore, the sum of state transition probabilities
from a fixed state to other states will be normalized to one

MRF
. a; .
__ i _
(i.e. a4; = =" and then z a; = 1). With the state
i J

J
transition probability aij calculated by MRF theory, the
optimal state transition paths of all training samples can be
found. In the identification phase, the maximum
accumulated probability along the optimal state transition

path is found for each STSVM. Represent T = {7, } , where
7, =Pr(g, |t =1) as the initial state probabilities. For an

input sequence I and an STSVM with 4, B, 7t parameters,
the normalized accumulated probability along the optimal
path is defined as

—%1og(Pr(I|A,B,1t))— Max {——log(Pr(I q|AB,m) > (7

every possible q

where the joint probability Pr(l, gld, B, T ) of an
observation sequence and a path ¢ is defined as
Pr(1,q| A,B,m)=Pr(I|¢,A,B,7)-Pr(q| A,B,7) - ®)

We use the Viterbi algorithm [12] to find out the optimal
path. The unknown behavior will then be identified into a
pre-defined behavior category with the highest accumulated
log-likelihood, which should also be greater than a
predefined threshold.

In this phase, several sets of STSVM models having
different parameter sets are prepared. Using these models,
the normalized accumulated probability scores are
calculated for all sets, and a set of models having maximum
score is selected. The testing sequence will be regarded as
non event (still unknown) if the obtained score is less than
the predefined threshold, which is defined based on different
sets of models.
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3. EXPERIMENTAL RESULTS

We collected 300 sequences from five different people,
60 of each activity: rising hand, standing up, squatting down,
falling down, and sitting down. Each activity begins and
ends with the corresponding poses. With the incrementally
increasing behavior number, more states are necessary in
STSVM. The more states we use in the STSVM model, the
higher performance the recognition system provides in our
investigation. However, the question now arises: the
overhead of computation time with increasing state number.
What has to be noticed is the trade-off between performance
and complexity of the developed system. We developed the
STSVM-based recognition system with three states, because
of two reasons: providing enough discriminability for all
behaviors that we consider and possibility for real-time
computing.

The state transition support vector machines aims to
identify significant human behaviors. We adopted the
precision measure to assess its effectiveness again. Table I
lists the precision values obtained by the single SVM, the
multi-stage SVM, GMM-based HMM and the STSVM.

Table 1. Evaluation of Human Behavior Identification on
Using Single SVM, Multi-state SVM, GMM-based HMM
and STSVM.

Frecisian ()

Human Belavior e M M“é‘i;i;"‘ge GMM basedHMM sT\?r:: e
Raising hand &0 81 o3 o5
3 tarding up 74 77 51 it
Squatting dowrn aa 71 73 i)
Falling down ¥ii) 79 s i)
Sitting down aa a8 T8 or

Adverage 732 752 8LE 286

According to the displayed experimental results, the
performance of the proposed STSVM apparently
outperforms the other two approaches. The single SVM
classifier does not present its superior performance due to its
weakness to deal with time-varying characteristics of an
event. The multi-stage SVM is limited by how to associate
input frames to the related stages. Besides SVM-based
methods, HMM is one of the most often used algorithms for
human behavior identification. In the last analysis, the main
limitations of GMM-based HMM are the discriminability of
GMM and the calculation of state transition probability for
people poses.

4. CONCLUSIONS
The goal of this study presents an effective human
behavior identification system for intelligent surveillance
and ubiquitous computing. The STSVM is the core
technique proposed in this study to develop the complete
system, which allows users to define meaningful human
behaviors. Each separated state contains one State SVM to
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determine the probability of a testing image belonging to.
Moreover, the transition probability between states is
modeled by MRF theory with the localized contour sequence
(LCS) approach. The main advantages of the proposed
method are shown as follows:
(a) The superiority in human pose recognition using
State SVM instead of GMM
(b) The power functionality to deal with unknown
length and non-deterministic content of event
sequences through transition model
Therefore, STSVM can accomplish the purpose of human
behavior identification well.
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