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ABSTRACT

With the introduction of dynamic image processing, such as

in image analysis, the computational complexity has become

data dependent and memory usage irregular. Therefore, the

possibility of runtime estimation of resource usage would

be highly attractive and would enable Quality-of-Service

(QoS) control for dynamic image-processing applications

with shared resources. A possible solution to this problem

is to characterize the application execution using model de-

scriptions of the resource usage. In this paper, we attempt

to predict resource usage for groups of dynamic image-

processing tasks based on Markov-chain modeling. As a

typical application, we explore a medical imaging application

to enhance a wire mesh tube (stent) under X-ray fluoroscopy

imaging during angioplasty. Simulations show that Markov

modeling can be successfully applied to describe the resource

usage function even if the flow graph dynamically switches

between groups of tasks. For the evaluated sequences, an

average prediction accuracy of 97% is reached with sporadic

excursions of the prediction error up to 20-30%.

Index Terms— Video signal processing, Software performance,

Multiprocessing, Object recognition, Stochastic approximation.

1. INTRODUCTION & MOTIVATION

As the number of applications featuring dynamic image pro-

cessing is increasing steadily, this poses new requirements on

the system design. With dynamic image-processing appli-

cations, such as in image analysis, the computational com-

plexity has become data dependent and memory usage irreg-

ular. Detailed know-how of specific application aspects, such

as data-driven complexity and the corresponding memory re-

quirements is relevant for optimal mapping of tasks on a com-

puting platform and optimizing the performance. In order to

achieve this, performance prediction may be applied in the

form of modeling, in order to guide the mapping and imple-

mentation. This paper concentrates on achieving sufficient

accuracy in the modeling for applications featuring dynamic

execution of tasks. The secondary objective is to use the mod-

els for the runtime estimation of the resource usage. In this

way, the model descriptions can be used as a prediction for

resource planning and possibly the corresponding quality-of-

service control of background tasks, avoiding quality degra-

dation, deadline misses or even system breakdowns due to

resource overloads [1].

Several techniques are reported in the literature for perfor-

mance prediction of parallel applications. Thiele [2] describes

a analysis method based on real-time calculus. However, it is

not suitable for data-dependent processing tasks. Gautama [3]

presents an analytical approach for parallel applications hav-

ing stochastic execution times of workloads. The solution is

not able to characterize any long-term dependencies on the in-

put data. Fritzsche et al. [4] describes a performance predic-

tion method based on deterministic models. Poplavko [5] and

Pastrnak [6] describe a scenario-based prediction paradigm.

It is based on the observation that dynamic behavior is typi-

cally composed of a limited number of sub-behaviors, called

scenarios. In our case, we study a mixture of the previous

features and new aspects. A difference is that our application

is not based on streaming video, but involves image analy-

sis, which has a more dynamic nature and will be discussed

below. The dynamics come from properties within the video

processing algorithm, rather than a quality control unit. Sec-

ondly, the dynamic decision making is based on outcomes of

the image analysis process which heavily depend on the video

data. Tasks in the analysis cannot be easily switched off since

that would lead to an incomplete or unacceptable result.

In our study, we explore a medical imaging function to

enhance a moving wire mesh tube (stent) under X-ray flu-

oroscopy imaging during a interventional angiography pro-

cedure [7, 8, 9]. Because physicians must see their actions

directly on the screen (eye-hand coordination), a low latency

is a key requirement for the imaging application. A single

processor system cannot cope efficiently with the computa-

tional complexity of such an advanced application. We as-

sume a chip-multiprocessor (multi-core) system as the target

platform. In the above application, modeling of resources

is complicated because depending on the image content and

intermediate analysis result, the algorithm may switch to a

different group of processing tasks. Therefore, the resource-
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Fig. 1. Flow graph for motion-compensated stent enhancement.

usage model is based on stochastic properties and should han-

dle abrupt changes in behavior and statistics. The modeling

is reported here for the computation and is under study for

cache memory and communication bandwidth. The modeling

technique can potentially be used for alternative applications

using image analysis, such as in surveillance systems etc.

This paper is organized as follows. In Section 2, the char-

acteristics of the application are described. Section 3 intro-

duces the prediction model including the estimation technique

coping with the dynamic behavior. Section 4 presents the ob-

tained results and the last section gives conclusions.

2. MEDICAL IMAGE-ANALYSIS APPLICATION

Coronary angioplasty is a catheter-based procedure per-

formed by an interventional cardiologist in order to open

up a blocked coronary artery and restore blood flow to the

heart muscle. Angioplasty is used as an alternative treatment

to coronary artery bypass surgery in more than half the cases.

Following balloon angioplasty, a wire mesh tube (stent) can

be placed to keep the artery open. The correct deployment of

a stent in the coronary arteries is important for ensuring the

efficacy of drug-eluting stents. Image analysis and motion-

compensation techniques can improve the visualization and

measurement of intracoronary stents in X-ray angiography,

thereby making it easier to achieve optimum and complete

stent deployment, potentially eliminating the need for addi-

tional procedures, such as intravascular ultrasound. In this

paper, we explore a medical-imaging application to enhance

moving stents under X-ray fluoroscopy imaging during a live

interventional angioplasty procedure 1.

Motion-compensated stent enhancement consists of sev-

eral steps, as depicted in Figure 1. The presented flow graph

is based on a cascading of four stages which are individually

described in [10, 11, 12, 13]. After stent placement, the can-

didate balloon markers are detected in the image using an au-

tomatic marker-extraction algorithm. Ridge detection (RDG)

and filtering is applied on the input images such that all other

structures, except candidate balloon markers, are removed.

Subsequently, marker extraction (MKX EXT) selects punc-

tual dark zones contrasting on a brighter background as can-

didate markers. Based on a-priori known distances between

the balloon markers, couples selection (CPLS SELECT) se-

lects the best marker couple from the set of candidate couples.

Subsequently, temporal registration (REG) to align respective

1The application is commercially available as StentBoost or IC Stent.

markers in selected image frames, is based on a motion crite-

rion, where a temporal difference is performed between two

succeeding images of the sequence. A Region of Interest is

estimated in the original image (ROI EST), where the mark-

ers have previously been detected. The guide wire is detected

by a ridge filter in guide-wire extraction (GW EXT). If the

markers of a possible couple are situated on a track corre-

sponding to a ridge joining them (the guide wire), this is the

indication that the results obtained by automatic marker ex-

traction are found stable. Enhancement (ENH) of the stent

is performed by temporal integration of the registered image

frames according to the balloon markers. The output is pre-

sented by zooming (ZOOM) in the ROI containing the stent.

The described application is dynamic in three major aspects:

(1) At the start, a ROI of variable data-dependent size is cho-

sen for further analysis, and (2) at every stage, a switch func-

tion selects a specific flow graph, depending on the previous

stage(s). Moreover (3), some of the internal flow graphs re-

quire a variable processing intrinsically.

3. PREDICTION MODEL OF EXECUTION TIME

In this section we will setup an accurate performance-

prediction model for each task that has to be executed on

the target platform. This prediction model should be able to

follow the dynamics in the processing over time with suf-

ficient accuracy. The application execution is characterized

using model descriptions of the resource usage, with the main

focus on computations in this paper. For each task in the flow

graph, we create a prediction model, based on the study of

the algorithm and experiments. The marker extraction, regis-

tration, ROI estimation, enhancement and zooming functions

are independent of the video content or size of the images.

The prediction can be defined with a constant value. There

are four data-dependent switch statements in the flow graph.

The current state is based on information from previously

processed video frames and can be described with a state

table. Each switch can signal tasks to process for example

only on a region of interest of the video frame or even skip

processing. The ridge detection, couples selection and guide-

wire extraction have a resource usage that is highly correlated

with the video content. Modeling and prediction of the com-

putation time for these functions is less straightforward.

We have considered several options for the modeling of

the application. As a first solution, we investigated literature
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Fig. 2. Computation time for the Ridge-detection task.

on video traffic modeling [14]. Most of the papers deal with

Markov-chain approaches since the estimation of the model

parameters is straightforward and there is a large number

of analysis techniques available. The main disadvantage of

these models are the exponentially decaying autocorrelation

functions of the generated sequence. This leads to inaccurate

performance estimates if long-term correlation properties ex-

ist of the video sequences. Similar to Markov-chain models,

autoregressive models suffer from this difficulty. For more

complex application models, the estimation of the model

parameters is often more difficult than in the Markov-chain

case. To deal with long-term correlated frames, higher-order

probabilistic processes can be used, but the state space will

grow exponentially. An alternative view on the modeling

of the system behavior is to consider the timing statistics of

the video frames in two categories, as a result from mapping

the algorithms on a platform. Hence, we then investigate

short-term and structural fluctuations in processing time on

the platform. Short-term fluctuations can be caused by cache

misses or the overhead imposed by task switching and con-

trol. Structural fluctuations are caused by the dependency of

the processing time of the tasks on the video content itself

over a longer time period. This points to the direction of

splitting the computational statistics in categories.

As a consequence of the previous discussions, we have

adopted a concept where the long-term statistics are decou-

pled from the short-term stochastic behavior by employing

different models for those statistics.

Short-term data correlations. We try to describe the pre-

diction model for the short-term data-dependent tasks as a

probabilistic process such as a finite state Markov chain. A

first-order Markov chain is by definition memoryless, where

in the model it is implicitly assumed that the processing

times of successive frames are independent. Based on com-

putation of the autocorrelation function, we have concluded

that couples selection (CPLS SEL) and guide-wire extraction

(GW EXT) tasks can both be modeled with Markov chains.

However, Markov-chain prediction falls short if processing

times between video frames are correlated over a longer time

period. Next, we will describe the modeling of long-term

structural data dependencies.

Long-term data correlations. We consider the prediction

model to consist of long-term low-frequency fluctuations,

around which short-term high-frequency fluctuations can take

place. Discrimination between the low and high-frequency

part can be made by various types of filters, such as Finite

Impulse Response (FIR) or Infinite Impulse Response (IIR)

filters. We apply the Exponentially Weighted Moving Aver-

age (EWMA) filter. As this IIR filter weights recent inputs

more heavily than long-term previous ones, it adapts more

quickly to the input signal compared to FIR filters. The

EWMA filter is defined by:

y(tk) = (1 − α) × y(tk−1) + α × tk (1)

Given the separation of correlation behavior, the short-term

fluctuations are modeled with Markov chains. We have

validated the applicability of the Markov-chain modeling

by analyzing the autocorrelation function. In Fig. 2, the

computation-time statistics for the ridge-detection (RDG

FULL) task are shown. To model the computation time for

the current video frame, the output of the EWMA filter is

used for long-term behavior prediction. On top of that, a

Markov chain predicts the short-term fluctuations in compu-

tation time. The state-space description can be generated by

analyzing the computation time over a long time period. The

number of states M is Cmax/σC , where Cmax denotes the

largest measured value and σC the standard deviation. We

have experimentally evolved to a model with approximately

2M states to obtain sufficient accuracy. The quantization in-

tervals are adaptively chosen such that each interval contains

on the average the same amount of samples. The entries of

the transition probability matrix {Pij} are estimated by

Pij = nij/(
M∑

k=1

nik), (2)

where nij denotes the number of transitions from interval i to

interval j.
Data-dependent switch statements in the flow graph can

cause the total processing time to change rather abruptly. For

example, the first switch in the flow graph, can select the RDG

task to operate only on a Region-Of-Interest (ROI) instead of

the full video frame. Other switch statements trigger or cancel

tasks to be executed. The switches are controlled with infor-

mation extracted from the previously processed video frames,

and stored in a state table. At the start of processing each

new video frame, the state can be extracted in advance. By

exploiting this information prior to the actual processing of

the task graph, the prediction model is made adaptive to dy-

namic changes in the data flow. This part corresponds to the

scenario-based switching in [5].

Processing-time statistics for different region-of-interest

sizes show that the RDG task has a linear dependency on the
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Table 1. (a) RDG transition matrix and (b) model summary.

size of the ROI. To analyze load fluctuations, caused by de-

pendencies on the video content itself, we have subtracted a

linear growth function from the obtained statistics. This func-

tion is specified by

ytk
= 0.067 × tk + 20.6. (3)

For the remaining data-dependent fluctuations after subtrac-

tion, we analyzed the autocorrelation function. As the func-

tion has a exponential decay, it can again be described with

a Markov chain. As the fluctuations are in the same order

as the high-frequency behavior described in the previous sec-

tion, we have included these statistics to the Markov state-

generation process, to generate a single Markov chain for the

ridge-detection task.

4. EXPERIMENTAL RESULTS

In this section, we show the prediction results for all tasks in

the flow graph of Fig. 1, based on the short-term and long-

term modeling techniques from the previous section. Based

on known methods for modeling video traffic performance in

networks, we applied probabilistic models for predicting the

execution time of data-dependent tasks. For tasks with long-

term dependencies on input data frames, we have applied fil-

tering to make the signal suitable for probabilistic modeling.

Data-dependent switch statements in the task graph are mod-

eled with state tables. Changes in the processing granularity

(ROI processing), are modeled with linear functions. Compu-

tation time statistics are obtained by profiling the executed ap-

plication on a chip-multiprocessor platform2. For training the

stochastic models, we used a data set of 37 video sequences

of in total 1,921 video frames. In the training set, different

scenarios exist for which the algorithms can adapt to. In Ta-

ble 1a, the Markov transition matrix is shown for the ridge-

detection task. Similar matrices are generated for the couples

selection and guide-wire extraction tasks. A summary of the

prediction models can be found in Table 1b. For the test se-

quences (Fig. 3), an average prediction accuracy of 97% is

reached with sporadic excursions of the prediction error up to

20-30%.

2A shared-memory, quad processor-core system, 2.33 GHz, 4 GB RAM.

Fig. 3. Prediction model results vs. actual computation time.

5. CONCLUSIONS

In this paper, we created a prediction model for groups of dy-

namic image-processing tasks based on Markov-chain mod-

eling. Resource modeling is relevant for optimal mapping

of tasks on a computing platform and optimizing the perfor-

mance. Furthermore, the models can be used for accurate

runtime estimation of the resource usage. In this way, an ap-

plication manager can be initiated for resource planning and

corresponding quality-of-service control of background tasks,

avoiding quality degradation, deadline misses or even system

breakdowns due to resource overloads [1].

Experimental results for a medical imaging function show

that Markov modeling can be successfully applied to describe

the resource usage function even if the flow graph dynami-

cally switches between groups of tasks. Results show an av-

erage prediction accuracy of 97% with sporadic excursions of

the prediction error up to 20-30%. The modeling technique

can potentially be used for alternative applications using im-

age analysis, such as in surveillance systems etc.
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