
 

 

IMPROVING ACOUSTIC SPEAKER VERIFICATION WITH VISUAL BODY-

LANGUAGE FEATURES 

 

Christoph Bregler, George Williams, Sally Rosenthal, Ian McDowall 

Courant Institute of Mathematical Sciences, New York University 

{chris,george,sally,ian}@movement.nyu.edu 
 

 

Abstract 

 

We show how an SVM based acoustic speaker verification 

system can be significantly improved in incorporating 

new visual features that capture the speaker’s “Body 

Language.” We apply this system to many hours of 

Internet videos and TV broadcasts of politicians and other 

public figures. Our data ranges from current and former 

US election candidates to the Queen of England, the 

President of France, and the Pope, while giving speeches.  

Index Terms— Speaker recognition, Machine vision, 

Motion analysis, Multimedia systems 

 

 

1. Introduction 

Among the reasons for recent advances in speaker 
recognition are discriminative classification based on 
SVMs [10] and novel feature extraction methods, 
based on both short-term spectral features [5,18] as 
well as prosodic and other linguistic information [16].    
Another important speech modality that so far has 
only been studied in the context of lip-reading is the 
visual signal [1,6].  Besides lip motions, the rest of the 
body—the eyes, head, arms, torso, and their various 
movements--sends important signals.  In this project, 
we study how to process these additional signals, the 
sum of which we call the "body signature."  We 
hypothesize that every person has a unique body 
signature, which we are able to detect and use in a 
speaker verification setting.  We present a new video-
based feature extraction technique and several 
experiments with an SVM based speaker verification 
technique [5]. Compared to acoustic speech, the body 
signature is much more ambiguous.  Despite this more 
challenging task, we show 20% Equal Error Rate 
(EER) using visual features only, and up to 4.1% EER 
using both acoustic and visual features. In all 
experiments we showed an improvement over pure 
acoustic verification performance. 

In Section 2 we outline our new visual feature extraction 

technique that converts the video signal into a sequence of 

vectors similar to acoustic feature front-ends. Section 3 

describes how we integrate these new modalities into an 

acoustic based speaker verification system, and section 4 

details our experiments with the audio-visual database of 

political speeches. 

 

2. Robust Visual Motion Features 

Tracking visual features on people in videos is very 
difficult.  It is easy to find and track the face because 
it has clearly defined features, but hands and clothes in 
standard videos are very noisy.   Self-occlusion, 
drastic appearance change, low resolution (i.e. the 
hand is sometimes just a few pixels in size), and 
background clutter make the task of tracking very 
challenging.  The most impressive people tracking 
recently has been demonstrated by [13]. It recognizes 
body parts in each frame by probabilistic fitting 
kinematic color and shape models to the entire body.  
Many other related techniques have been proposed, 
but an extensive literature review is beyond the scope 
of this paper. Please see the survey article by [9].  
Explicitly tracking body parts would be of great 
advantage for our problem, but given the low-
resolution web footage, it might be impossible to 
explicitly track the hands this way. Our technique 
builds on the observation that it is easy to track just a 
few reliable features for a few frames (instead of 
tracking body parts over the entire video).   Given 
those short-term features at arbitrary “un-known” 
locations, we apply an implicit feature representation 
that is inspired by techniques that compute global 
orientation statistics of local features.  Examples 
include [8,3,12,19,7]. 

We are interested in a robust feature detector that does 
not use explicit tracking or body part localization 
(because these techniques will fail frequently, 
especially on low-res TV and web footage).  We are 
interested in a feature extraction process that is always 
able to report a feature vector, no matter how complex 
the input video is. 

2.1 MOS: Motion Orientation Signatures 

The first step in our extraction schema is the visual 2D 
flow computation at such reliable feature locations.  
We detect reliable features with the “Good Features” 
technique by [15] and then compute the flow vector 
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with a standard pyramidal Lucas & Kanade estimation 
[4].  Given these subpixel resolution flow estimates, 
we compute a weighted angle histogram:  The 2D flow 
directions are discretized into N angle bins (we had 
good experience with N=18). Each angle bin then 
contains the sum of the flow magnitudes in this 
direction. i.e., large motions have a larger impact than 
small motions.  We clip flow magnitudes larger than a 
certain maximum value before adding it to the angle 
bin.  This makes the angle histogram more robust to 
outliers.   We then normalize all bin values in dividing 
them by the number of total features.  This factors out 
fluctuations caused by a different number of features 
found in different video frames.   The bin values are 
then blurred across angle bins and across time with a 
Gaussian kernel (sigma=1 for angles, and sigma=2 for 
time).  This avoids aliasing effects in the angle 
discretization and across time.  (Many web-videos 
only have 15 fps; some videos are with 24 fps and up-
sampled to 30 fps.)  After the spatio-temporal blurring, 
we further normalize the histogram values to 0-1 over 
a temporal window (currently t=10).   This factors out 
video resolution, camera zoom and body size (double 
resolution creates double flow magnitudes), but could 
also factor out important features.  Some people’s 
motion signature is based on subtle motions, while 
others’ large movements are much more part of their 
signature.   For this reason, we keep the normalization 
constant as one extra feature.  This is related to the 
energy value in established acoustic front-ends.  

   

   

 
Figure 1: Several politicians doing different hand 
waving motions.  The top rows (green) show the 
angle bin values over time.  The middle rows (red is 
positive, blue is negative) show the delta-features 
over time.  The bottom rows show the acoustic 
features. 

As with acoustic speech features, we also compute 
“delta-features,” the temporal derivative of each 

orientation bin value.    Since the bin values are 
statistics of the visual velocity (flow), the delta-
features cover acceleration and deceleration.  For 
example if a subject claps her hands very fast, it 
produces large values in the bin values that cover 90° 
and 270° (left and right motion), but also large values 
in the corresponding delta-features.  If a person just 
circles her hand with constant velocity, the bin values 
have large values across all angles, but the delta-
features have low values.  Figure 1 shows some 
example motion orientation signatures. 

One very important aspect of this feature 
representation is that it is invariant to the location of 
the person.  Given that the flow vectors are computed 
only at reliable locations, and we clip large flow 
vectors, the histograms are also very robust to noise. 

Example MOS feature videos can be found at: 
http://movement.nyu.edu/ICASSP09 

2.2 Shot Detector 

If the footage is coming from TV or the Web it might 
be edited footage with scene cuts.  Our recognition 
system should only work on one shot (scene) at a time, 
not the entire video.  At shot boundaries, we see in the 
motion histograms drastic changes and could use that 
for segmenting scenes.    Instead, we had better 
experience in additionally computing histograms over 
the color-values in each frame.   If the difference 
between color-histograms is above a threshold (we use 
the histogram intersection metric), we then split the 
video [20].  With shots that are longer then 5 minutes 
(i.e. a speech), our shot-detector cuts the video into 5 
minute shots.  Sometimes we get very short shots of 
just a few seconds.  Every shot that is below 5 seconds 
will be discarded. Shot-detection is an active research 
field, and we expect to incorporate a more advanced 
shot-detector in the future. 

2.3 Limitations 

As it happens with multiple acoustic speakers in one 
audio channel, when additional speakers are seen in 
the video, additional features will end up in the MOS 
signature. That is, if people are in the background 
clapping their hands while a political candidate gives a 
speech, the motion of the hand clapping produces 
“visual noise” similar to additive acoustic noise. In a 
future version we plan to incorporate a face-detector to 
constrain the visual features to body locations only (in 
order to avoid “visual noise”).   
 

3. GMM-Super-Features and SVM models 

There are many possible architectures that produce 
state-of-the-art results for the task of speaker 
verification. We chose a technique proposed by [5] 
that converts an arbitrary long speech segment into a 
fixed-length feature vector and applies a SVM to 
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perform a classification. In a first step, a Gaussian 
Mixture Model (GMM) is used to estimate a 
“Universal Background Model” (UBM-GMM) from a 
large un-labeled speech corpus.  We estimated such a 
UBM from the acoustic data and the visual MOS 
features.  The video data included 1556 shots of 
automatically (randomly) downloaded YouTube videos 
containing unlabelled campaign speeches, music 
videos, TV commercials, audience reaction shots, and 
many other examples. We used half of these shots for 
training the UBM, and reserved the other half for 
testing.  Although acoustic UBMs usually have GMMs 
with 64 or more mixtures, we achieved best results 
with 32 mixtures.  Given such a UBM, so-called 
“Super-Features” can be calculated.  A MAP adaption 
of the UBM [14] is performed for each acoustic 
speech segment or each video shot separately.   The 
difference between the MAP adapted means and the 
UBM means is the so called GMM-Super-Feature 
vector.    

3.1 Audio-Visual Integration 

One challenge is how to integrate both modalities (as 
in related audio-visual lip-reading tasks [1,2,6]).  This 
can be done at different abstraction levels.  With our 
architectural choice, there are at least 2 different 
possible integration levels: 1) at the feature level, i.e. 
the GMMs are computed over the concatenated 
acoustic and visual vectors, 2) after the super-feature 
calculation, before they are fed into the SVM (i.e. the 
GMM-UBM clustering and the MAP adaption is done 
separately).  We achieved superior results with the 
second integration method.   We can imagine that with 
a significant larger database we might be able to afford 
more mixture models without over-fitting, and the first 
integration option might become superior.    

Figure 2 shows a diagram of our system architecture. 

For the acoustic front-end we used standard Mel 
Frequency Cepstral Coefficient (MFCC) features (12 
Cepstral values, 1 energy value, and delta values). 

 
Figure 2: The audio-visual integration. 

4. Experiments 

Using the second half of the 1556 shots of random 
YouTube videos and 208 shots of 9 famous public 
figures (approx 4h data, see Figure 3) that were 
labeled by categories, we trained several SVM 
architectures.  We ran 90 trials of different split-up 
between training set and test set for 7 different 
scenarios: 1) Clean acoustic speech, 2) Acoustic 

speech with 17dB of background noise (recorded in a 
pub including other chatter and noises), 3) Acoustic 
speech with 9.5dB of background noise, 4) Visual data 
only, 5-7) the 3 different noise-degraded acoustic 
speech data sets combined with visual speech. In all 
cases we could reduce the acoustic-only error rate in 
incorporating visual information: In perfect settings 
with clean acoustic data (Figure 4), the equal error rate 
of 4.7% EER (audio only) is reduced to 4.1% EER 
using audio-visual input (visual only is 20% EER). We 
got a very dramatic improvement on the 17dB SNR 
acoustic data in Figure 5, from acoustic EER of 9.4% 
error down to audio-visual EER of 4.9%, which cuts 
the error by almost half.   In the 9.5dB SNR (heavier 
acoustic noise) environment in Figure 6, the EER goes 
from 21.8% (audio only) to 15% (audio visual).  

 

 
Figure 3: Example Video Clips 

 

 
Figure 4: Clean audio: Visual EER: 20%, Acoustic  

EER: 4.7%, AV EER: 4.1% 

5. Discussion and Future Plans 

We have shown most significant improvement of the 
performance of a Speaker Verification System if the 
acoustic data is noise degraded, and we add visual 
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information from the speaker. But surprisingly, even 
on clean acoustic data where current acoustic systems 
perform with very low error, we could show additional 
reduction of the error rate with additional visual 
information.  We plan to further improve the visual 
feature representation in adding other visual 
descriptors.  We also plan to investigate different 
recognition architectures, including convolutional 
network architectures (TDNNs), and graph-based 
architectures (HMM, Bayes-nets), and also plan to 
apply these new visual features to other tasks, 
including body-language clustering. We also plan to 
incorporate into our models recent advances in 
modeling the variability of features across different 
samples for the same speaker, like nuisance attribute 
projection [17] and factor analysis [11]; such 
techniques should benefit both the acoustic and the 
visual features. 

 
Figure 5: 17dB noise: Visual EER: 20%, Acoustic  

EER: 9.4%, AV EER: 4.9% 

 

 
Figure 6: 9.5dB noise: Visual EER: 20%, Acoustic  

EER: 21.8%, AV EER: 15% 
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