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ABSTRACT

Chroma-based audio features are a well-established tool for
analyzing and comparing music data. By identifying spectral
components that differ by a musical octave, chroma features
show a high degree of invariance to variations in timbre. In
this paper, we describe a novel procedure for making chroma
features even more robust to changes in timbre and instru-
mentation while keeping their discriminative power. Our idea
is based on the generally accepted observation that the lower
mel-frequency cepstral coefficients (MFCCs) are closely re-
lated to timbre. Now, instead of keeping the lower coeffi-
cients, we will discard them and only keep the upper coef-
ficients. Furthermore, using a pitch scale instead of a mel
scale allows us to project the remaining coefficients onto the
twelve chroma bins. Our systematic experiments show that
the resulting chroma features have indeed gained a significant
boost towards timbre invariance.

Index Terms— Chroma feature, MFCC, timbre-invariance,
audio matching, music retrieval

1. INTRODUCTION

One main goal of content-based music analysis and retrieval
is to reveal semantically meaningful relationships between
different music excerpts contained in a given data collection.
Here, the notion of similarity used to compare different music
excerpts is a delicate issue and largely depends on the respec-
tive application. In particular, for detecting harmony-based
relations, chroma features have turned out to be a power-
ful mid-level representation for comparing and relating mu-
sic data in various realizations and formats [2, 4, 5, 7, 8].
Chroma-based audio features are obtained by pooling a sig-
nal’s spectrum into twelve bins that correspond to the twelve
pitch classes or chroma of the equal-tempered scale. Identi-
fying pitches that differ by an octave, chroma features show
a high degree of robustness to variations in timbre and are
well-suited for the analysis of Western music which is char-
acterized by a prominent harmonic progression [2]. In par-
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ticular, such features are useful in tasks such as cover song
identification [4, 8] or audio matching [5, 7], where one often
has to deal with large variations in timbre and instrumentation
between different versions of a single piece of music.

In this paper, we present a method for making chroma
features even more robust to changes in timbre while keeping
their discriminative power as needed in matching applica-
tions. Here, our general idea is to discard timbre-related
information expressed by certain mel-frequency cepstrum
coefficients (MFCCs). More precisely, recall that the mel-
frequency cepstrum is obtained by taking a decorrelating
cosine transform of a log power spectrum on a logarith-
mic mel scale [6]. A generally accepted observation is that
the lower MFCCs are closely related to the aspect of tim-
bre [1, 9]. Therefore, intuitively spoken, one should achieve
some degree of timbre-invariance when discarding exactly
this information. As our main contribution, we combine this
idea with the concept of chroma features by first replacing
the nonlinear mel scale by a nonlinear pitch scale. We then
apply a cosine transform on the logarithmized pitch represen-
tation and only keep the upper coefficients, which are finally
projected onto the twelve chroma bins to obtain a chroma
representation. The technical details of this procedure are
described in Sect. 2. We report on two experiments showing
that out novel chroma features indeed have gained a signif-
icant boost towards timbre invariance. We first describe an
experiment based on audio data systematically synthesized by
different instruments (Sect. 3). Then, using real audio data,
we show how our novel features improve the matching qual-
ity between harmonically-related music excerpts contained
in different versions and arrangements of the same piece of
music (Sect. 4). Conclusions and prospects on future work
are given in Sect. 5.

2. FEATURE DESIGN

In this section, we present the technical details for our novel
audio features, see Fig. 1 for an overview. As front end
transform, the audio signal is decomposed into 120 frequency
bands corresponding to the MIDI pitches 1 to 120 using a
suitable multirate filter bank. We then take the short-time
mean-square power (local energy) for each of the 120 sub-
bands by convolving the squared subband signals with a
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Fig. 1. Overview of the computation of the CRP (chroma
DCT-reduced log pitch) features.
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Fig. 2. Various chromagrams of the theme’s beginning
of the second Waltz, Jazz Suite No. 2 by Shostakovich.
(a)/(b): Conventional chromagram of string/trombone ver-
sion. (c)/(d): CRP(55) chromagram of string/trombone ver-
sion. All chroma vectors are normalized.

rectangular window corresponding to 200 ms with a 50%
overlap. The resulting feature representation has a resolution
of 10 Hz (10 features per second) and is referred to as pitch
representation. To obtain a conventional chroma representa-
tion (chromagram), one adds up the corresponding values of
the pitch representation that belong the same chroma yielding
a 12-dimensional vector for each analysis window. We refer
to [7] for details and to Fig. 2 for an illustration.

For our novel audio features, we process the pitch repre-
sentation before doing the chroma binning. The steps are sim-
ilar to the ones in the computation of MFCCs [6], where one
uses a mel scale instead of a pitch scale. First the pitch repre-
sentation is logarithmized. Here, we replace each value v by
log(C · v +1) with a positive constant C. In our experiments,
C = 1000 turned out to be a suitable value, even though
any value between 100 and 10000 produced a similar result.
Then, we apply a discrete cosine transform (DCT) of size 120
to each of the 120-dimensional logarithmized pitch vectors.
The resulting 120 coefficients have a similar interpretation as
the MFCCs. In particular, the lower coefficients are related
to timbre as observed by various researchers, see [1, 9] and
the references therein. Now our goal of achieving timbre-
invariance is the exact opposite of the goal of capturing tim-
bre. Therefore, we discard the information given by the lower
n − 1 coefficients for a parameter n ∈ [1 : 120] by setting
them to zero while leaving the upper coefficients unchanged.
Each resulting 120-dimensional vector is then transformed by

the inverse DCT and projected onto the twelve chroma bins
to obtain a 12-dimensional chroma vector. Finally, all chroma
vectors are normalized to have unit length. The resulting au-
dio features are referred to as CRP(n) (chroma DCT-reduced
log pitch) features, see Fig. 1.

As illustration, we consider the second Waltz of the Jazz
Suite No. 2 by Shostakovich, which also serves as running
example in the subsequent sections. The theme of this piece
appears four times played in four different instrumentations
(strings, clarinet, trombone, tutti). Furthermore, there are
significant differences between the four themes with respect
to secondary voices. Due to these differences, the resulting
conventional chromagrams may strongly deviate from each
other. This is illustrated by Fig. 2 (a) and (b) showing the con-
ventional chromagrams of the theme’s beginning of the first
(strings) and third (trombone) excerpt in an interpretation by
Yablonsky. Contrary, the corresponding two CRP(55) chro-
magrams as shown in (c) and (d) coincide to a much larger
degree.

3. EXPERIMENTS ON CHORD CHROMA CLASSES

We quantitatively compared our CRP(n) features for various
parameters n ∈ [1 : 120] with some commonly used chroma
types including two freely available chroma implementations
by Ellis [3] (Chroma-IF-Ellis, Chroma-P-Ellis) as well as the
conventional chroma features described in Sect. 2 (Chroma-
Pitch). In all cases, the feature resolution was roughly 10 Hz
and all chroma vectors were normalized. The various chroma
types will serve as baseline to illustrate the boost of robust-
ness achieved by CRP(n) features.

In our first experiment, we used systematically synthe-
sized audio material. To this end, we created a MIDI file
containing all possible single pitches (1-chords), duads (2-
chords) and triads (3-chords) within a fixed octave. This re-
sulted in 12 +

(
12
2

)
+

(
12
3

)
= 220 chords. The MIDI file

was then synthesized in 24 different ways using eight differ-
ent instruments each playing the file in three different octaves.
Here, we used the software Cubase in combination with a
high quality sample library. Fixing a specific chroma type,
we converted each of the resulting 24 audio files into a chro-
magram. Next, for each of the 220 chords we formed a class
consisting of 48 chroma vectors—one representative chroma
vector within the attack and one within the sustain phase of
each of the 24 realizations of the respective chord. The classes
are referred to as chord chroma classes. The distance between
two normalized chroma vectors was computed using the co-
sine distance (1− 〈·, ·〉).

Now, disregarding timbre and dynamics, any two chroma
vectors within a chord chroma class are considered as sim-
ilar, whereas two chroma vectors from different classes are
considered as dissimilar. To measure the degree of timbre in-
variance of a given chroma type, we computed the distances
between any two chroma vectors that belong to the same
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Chroma type μO μI ρ

Chroma-IF-Ellis 0.66 0.35 1.88
Chroma-P-Ellis 0.42 0.18 2.38
Chroma-Pitch 0.75 0.23 3.26
CRP(35) 0.99 0.10 10.30
CRP(55) 1.00 0.10 9.83
CRP(75) 1.00 0.11 8.76

Table 1. Performance of several chroma types in the experi-
ments on chord chroma classes.

chord chroma class. Let μI be the average over the resulting
220 ·

(
48
2

)
distances. Note that μI should be small in the case

that the chroma type has a high degree of timbre invariance.
Similarly, we computed the average distance μO over any
two chroma vectors from different chord chroma class. Note
that μO should be large to guarantee discriminate power of
a chroma types. Finally, we form the quotient ρ := μO/μI

which expresses the across-class distance μO relative to the
within-class distance μI. Table 1 shows the values μI, μO,
and ρ for various chroma types. Note that the within-class
distance drastically decreases for our CRP(n), while retaining
the discriminative power even for large n.

4. EXPERIMENTS BASED ON AUDIO MATCHING

Our second experiment was conducted on real audio data and
is motivated by an application referred to as audio matching:
given a short query audio clip, the goal is to automatically re-
trieve all musically (harmonically) similar excerpts in differ-
ent versions and arrangements of the same underlying piece of
music [5, 7]. We will compare the CRP(n) features with con-
ventional chroma features by means of several performance
measures that express the matching quality.

As basis for the matching procedure, we use a distance
function locally comparing a query sequence with a given
database sequence. Let X = (X(1), X(2), . . . , X(K)) and
Y = (Y (1), Y (2), . . . , Y (L)) be the feature sequences of the
query and the database, respectively. (In our case, the fea-
tures X(k), k ∈ [1 : K], and Y (�), � ∈ [1 : L], are nor-
malized chroma vectors.) Then, we define a distance function
Δ : [1 : L] → R ∪ {∞} between X and Y using a variant of
dynamic time warping (DTW):

Δ(�) :=
1

K
min

a∈[1:�]

(
DTW

(
X , Y (a : �)

))
, (1)

where Y (a : �) denotes the subsequence of Y starting at
index a and ending at index � ∈ [1 : L]. Furthermore,
DTW(X,Y (a : �)) denotes the DTW distance between X
and Y (a : �) with respect to a suitable local cost measure
(in our case, the cosine distance). For details on DTW and
the distance function, we refer to [7]. The interpretation of
Δ is as follows: a small value Δ(�) for some � ∈ [1 : L]
indicates that the subsequence of Y starting at frame a� (with
a� ∈ [1 : �] denoting the minimizing index in (1)) and ending
at frame � is similar to X .

Having this interpretation in mind, the two following
properties of Δ are of crucial importance in view of the audio
matching application. First, the semantically correct matches
(in the following referred to as true matches) should cor-
respond to local minima of Δ close to zero (thus avoiding
false negatives). We capture this property by defining μX

I

and maxX
I to be the average respective maximum of Δ over

all indices that correspond to the local minima of the true
matches for a given query X . Second, Δ should be well
above zero outside a neighborhood of the desired local min-
ima (thus avoiding false positives). Here, we define μX

O and
minX

O to be the average respective minimum of Δ over all in-
dices outside these neighborhoods. From the above, it is clear
that μX

I and maxX
I should be small whereas μX

O and minX
O

should be large. Similar to Sect. 3, we express these two
properties within a single number, respectively, by defining
the quotients ρX

μ = μX
O/μX

I and ρX
min = maxX

I /minX
O .

We illustrate the definition of Δ by means of our Shosta-
kovich example from Sect. 2. Suppose our database consists
of two interpretations (Yablonsky, Chailly) of the Waltz. Re-
call that the theme appears four times in the piece. Let E1

to E4 denote the corresponding excerpts in the first and E5

to E8 in the second recording. Now, using E3 (trombone)
as query, one has eight true matches. Using conventional
chroma features, seven of the eight matches (except of E5)
are indeed indicated by local minima of the resulting distance
function Δ, see the gray curve of Fig. 3. However, due to
the above mentioned differences in timbre, most of these lo-
cal minima are not well developed and have relatively large
Δ-values. Now, using our CRP(n) features, one obtains for
all eight true matches (even for E5) much more concise local
minima, see the black curve of Fig. 3. This demonstrates that
the choice of a chroma type has a significant impact on the
final matching quality.

In order to quantitatively evaluate the CRP(n) features for
various parameters n ∈ [1 : 120] and the other chroma types,
we generated a database consisting of 31 audio recordings of
12 different pieces comprising classical and popular music by
Bach, Shostakovich, Wagner, Queen, Genesis, Beatles, and
others. For each piece there are at least two different record-
ings typically comprising the original version and an arrange-
ment (e.g., piano version of an orchestral piece) or cover song.
For each piece, we picked an excerpt and manually annotated
all musically similar excerpts within all the recordings. These
excerpts are the true matches when using any of these ex-
cerpts as query. For example, the database contains two ver-
sions (Yablonsky, Chailly) of the Shostakovich example with
the above mentioned 8 annotated excerpts. Altogether, we an-
notated 90 excerpts with an average length of 30 seconds. We
used any of these excerpts as query, computed the distance
functions over all database audio files, and derived the values
μX

I , maxX
I , μX

O , minX
O , ρX

μ , and ρX
min. Averaging over all

90 queries, we obtain the corresponding numbers μI, maxI,
μO, minO, ρμ, and ρmin. Note that ρμ is not the quotient of
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Fig. 3. Different distance functions shown for two recordings (Yablonsky, Chailly) of the Shostakovich example using the
excerpt E3 as query. The following chroma types were used: Chroma-IF-Ellis (thin gray), Chroma-Pitch (bold gray) and
CRP(55) (black). For the query, there are 8 annotated excerpts.

Chroma type μO minO μI maxI ρμ ρmin

Chroma-IF-Ellis 0.41 0.25 0.16 0.20 2.74 1.33
Chroma-P-Ellis 0.19 0.11 0.06 0.08 3.15 1.35
Chroma-Pitch 0.48 0.26 0.15 0.20 3.84 1.53
CRP(35) 0.68 0.31 0.14 0.18 5.81 1.99
CRP(55) 0.64 0.27 0.12 0.16 6.24 2.00
CRP(75) 0.57 0.21 0.10 0.14 5.97 1.62

Table 2. Performance of several chroma types in the experi-
ments based on audio matching.
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Fig. 4. Dependence of the performance measure ρmin on the
parameter n ∈ [1 : 120] using CRP(n) features.

μO and μI, but the average of the ρX
μ . Analogously, this also

holds for ρmin.

Table 2 shows these numbers using various chroma
type. For example, using the conventional chroma features
(Chroma-Pitch), the average distance of the true matches is
μI = 0.15, whereas the average distance outside the matches
is μO = 0.48, resulting in a quotient ρμ = 3.84. In view of
the audio matching application, the values maxI and minO

are even more expressive: in case the maximal distance over
the true matches is below the minimal distance outside the
true matches (in this case one has ρX

min > 1), all true matches
will appear as the top matches. In this case, the true matches
are separated from spurious matches. With respect to this
measure, our novel CRP(n) features achieve a significant
improvement. For example, one obtains ρmin = 2.00 when
using CRP(55) features, whereas one has ρmin = 1.53 when
using the conventional chroma features (Chroma-Pitch).

In a final experiment, we computed for each n ∈ [1 :
120] the performance measure ρmin using the correspond-
ing CRP(n) features. The resulting curve, which is shown in
Fig. 4, indicates that one obtains the best separation between
true and spurious matches for parameters n ∈ [22 : 60].

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new type of chroma feature,
which shows a higher degree of robustness to changes in tim-
bre than conventional chroma features. Using our novel CRP
features, one can significantly improve the performance in
matching and classification applications, where one wants to
be invariant to instrumentation and tone color. Actually, the
essence of this improvement is best explained by Fig. 3. For
the future, we plan to apply CRP features for various tasks in
music information retrieval. We will also further explore and
improve CRP features. Here, first experiments indicate that
one may further reduce the number of coefficients without a
degradation of the discriminative power.

6. REFERENCES

[1] J.-J. Aucouturier and F. Pachet, “Improving timbre similarity:
How high’s the sky,” Journal of Negative Results in Speech
and Audio Sciences, vol. 1, 2004.

[2] M. Bartsch and G. Wakefield, “Audio thumbnailing of popular
music using chroma-based representations,” IEEE Trans. on
Multimedia, vol. 7, no. 1, pp. 96–104, Feb. 2005.

[3] D. Ellis, “Chroma features analysis and synthesis,” http://

www.ee.columbia.edu/˜dpwe/, 2007.

[4] D. Ellis and G. Poliner, “Identifying Cover Songs With
Chroma Features and Dynamic Programming Beat Tracking,”
in Proc. IEEE ICASSP, 2007.

[5] F. Kurth and M. Müller, “Efficient index-based audio match-
ing,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 16, no. 2, pp. 382–395, Feb. 2008.

[6] B. Logan, “Mel frequency cepstral coefficients for music mod-
eling,” in Proc. ISMIR, Plymouth, USA, 2000.

[7] M. Müller, Information Retrieval for Music and Motion,
Springer, 2007.
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