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ABSTRACT

Music is an art form in which sounds are organized in time; how-
ever, current approaches for determining similarity and classifica-
tion largely ignore temporal information. This paper presents an
approach to automatic tagging which incorporates temporal aspects
of music directly into the statistical models, unlike the typical bag-
of-frames paradigm in traditional music information retrieval tech-
niques. Vector quantization on song segments leads to a vocabulary
of acoustic segment models. An unsupervised, iterative process that
cycles between Viterbi decoding and Baum-Welch estimation builds
transcripts of this vocabulary. Latent semantic analysis converts the
song transcriptions into a vector for subsequent classification using
a support vector machine for each tag. Experimental results demon-
strate that the proposed approach performs better in 15 of the 18
tags. Further analysis demonstrates an ability to capture local tim-
bral characteristics as well as sequential arrangements of acoustic
segment models.

Index Terms— Music, Hidden Markov models, Information re-
trieval, Vector quantization, Speech processing

1. INTRODUCTION

Recently, semantic tags have become a popular means to organiz-
ing, retrieving, and discovering multimedia content. In the case of
music, tags are replacing traditional music taxonomies such as genre
and style. Tags, which are short, descriptive keywords, are assigned
by two groups: experts or regular users. An example of an expert-
oriented music discovery site is Pandora1, where musicians categor-
ically rate music along several musical dimensions. A popular web-
site that takes advantage of the collective knowledge is Last.fm2,
where any user can assign any tag to any work at any time. Re-
gardless, both types suffer from the cold-start problem, where new
or untagged songs cannot be retrieved because no tags exist for the
song. In the case of user-assigned tags, other problems include un-
informative tags to the general population (e.g., albums I own) and
vandalism, where users assign tags inappropriately.

A solution to the cold-start problem is automatic tagging, which
provides an initial set of tags and allows suggested playlists to in-
corporate new songs. In addition, automatic tagging algorithms can
flag tags that do not describe the content of the work and arose due to
vandalism. Previous techniques for providing tags automatically use
a bag-of-frames framework [1], which ignores the temporal struc-
ture of music by treating small frames of audio as independent and
identically distributed. The algorithm detailed in this paper uses

1www.pandora.com
2www.last.fm

speech recognition technology to build a vocabulary of acoustic to-
kens, which incorporate temporal structure probabilistically. Specif-
ically, an initial set of songs is tokenized into a small set of 128 rep-
resentative models, called acoustic segment models (ASMs). Each
ASM is modeled with a hidden Markov model (HMM) to incorpo-
rate temporal information. Latent semantic analysis (LSA) [2] con-
verts each song into a weighted vector of ASM symbol counts and
their co-occurrences, which then train vector-based classifiers; i.e.,
support vector machines (SVMs).

2. PREVIOUS WORK

First approaches to relate music to semantic content utilized data-
mining techniques on webpages about the musical works. In [3],
semantic basis functions maximize the semantic meaning of words
based on musical features. Slaney [4] models the connection be-
tween anchor points in the acoustic space and semantic audio de-
scriptions in a hierarchical multinomial clustering model. However,
tags have some differences than freely-flowing text. Tags are short,
descriptive keywords and generally refer to a particular audio qual-
ity; hence, it is possible to directly model the tags acoustically.
For example, in [1] a Gaussian mixture model (GMM) is estimated
for each song and builds a tag-level GMM using a mixture-of-
hierarchies algorithm.

However, these approaches rely on a bag-of-frames model or
features derived from the entire audio file; e.g., rhythm features. Ex-
amples of past approaches to model temporal aspects include deriva-
tives of features [1] and modulation cepstra [3]. In [5], Casey and
Slaney argue that sequences are important in determining musical
similarity; however, the authors examined only repeated sections
within a song and did not investigate inter-song similarity. Further,
the modeling approach relied on uniform segmentation; i.e., texture
windows. This paper presents an approach that incorporates tempo-
ral information into a probabilistic framework by using HMMs in a
similar fashion as automatic speech recognition, and first proposed
in [6] for genre recognition. While this approach compares favorably
to other approaches, determining the advantages in modeling tempo-
ral structures proved difficult to assess because genre recognition is
ill-defined [7]. By investigating the proposed approach on tags, the
authors demonstrate the advantages of incorporating temporal infor-
mation directly into the statistical models.

3. ASM-BASED AUDIO TAGGING SYSTEM

This section describes the proposed algorithm in two sub-sections:
the front-end tokenizer and the back-end vector-modeling with tag
classifiers, as diagrammed in Figure 1.
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Fig. 1. System diagram.

3.1. Tokenizer

The front-end tokenizes a song into a string of ASM indexes parallel
to the way automatic speech recognition tokenizes an utterance into
a string of words or phonemes. First, a maximum-likelihood seg-
mentation algorithm [8], which was originally designed to segment
speech into subword units (phonemes), tokenizes the training corpus
into acoustic segments. Next, vector quantization of the segment
centroids builds a vocabulary of ASMs, which are small acoustic
tokens. Each song can then be temporally represented as a string
of symbols (i.e., a transcript) from the ASM index that best repre-
sents the segment. The transcripts and acoustic models are refined
through an iterative process between Baum-Welch estimation and
Viterbi decoding. First, each ASM in the vector quantized codebook
is modeled with a 3-state HMM, which has a 16-mixture GMM with
a diagonal covariance matrix in each state. Baum-Welch estimation
updates the HMMs using the transcriptions as a reference. Using
the updated HMMs, Viterbi decoding creates a new transcription of
ASM indexes. The algorithm then uses the new transcripts in the
next iteration to refine the HMMs further using Baum-Welch esti-
mation and create new transcripts from these updated HMMs using
Viterbi decoding. Generally, only two or three iterations of Baum-
Welch estimation followed by Viterbi decoding are needed for con-
vergence.

It should be noted that the segmentation algorithm in [8] is ex-
pensive in terms of computation time. Therefore, a small set of
songs is used to bootstrap the initial HMMs. The entire training
set is added after the first round of Baum-Welch updates. Further, to
ensure that the segmentation is based on the slowly changing spec-
tral shape, only the first 8 MFCCs are used for the segmentation
procedure [9]. After the vector quantization step that produces the
original transcriptions, the 8 MFCCs are replaced with the more tra-
ditional 39-dimensional vector consisting of MFCCs 0 through 12,
plus their derivatives and accelerations, to incorporate more spectral
information.

3.2. Vector Modeling

The front-end tokenizer outputs a transcription of ASM indexes for
each song in the training set, which the back-end classifier converts
into a vector, using LSA. The final classification uses an SVM for
each tag. First, the unigram and bigram counts in each song are
obtained, where a unigram is the occurrence of an individual ASM
and a bigram is the occurrence of an ordered ASM pair. For the
purposes of this paper, a term refers to either a unigram or a bigram.
For example, if the output transcription of a song is (3, 44, 3), then
the output vector would have a 2 in the location for ASM term 3, and
a 1 in the location for ASM terms 44, (3,44), and (44,3), but zeros
everywhere else. This results in a vector of size M = J + J ∗ J ,

where J is the number of ASMs in the vocabulary. For example,
for a vocabulary of size 128, the resulting vector has a dimension of
128 + 128 ∗ 128 = 16512.

Next, the entropy [2] of each term is calculated as

εi = − 1

log N

N∑

j=1

ci,j

ti
log ti (1)

where N is the number of training songs, ci,j is the count for term i
in song j, and ti is the number of times term i appears in the entire
training database. A term entropy close to zero indicates that the
term appears in few songs and a value close to one indicates the term
occurs in almost every song. The matrix W contains the entropy
weighted counts for term i in song j,

wi,j = (1− εi)
ci,j

nj
(2)

where nj is the number of ASM tokens in song j. To reduce the
sparsity in W , singular value decomposition reduces the dimension
to 250, which experimentally resulted in a good performance.

Finally, a SVM is trained with SVMlight [10] for each tag such
that the positive class refers to tag present and the negative class
refers to tag missing. For each test point SVMlight returns the dis-
tance between a sample and the separating hyperplane, which is
compared to a threshold for the classification decision.

3.3. Baseline Classifier

The classifier in [1] provides the baseline comparison of perfor-
mance. Essentially, each song is first modeled with a 16-mixture
GMM. Next, a tag GMM with 8 mixtures is estimated by a mixture-
of-hierarchies algorithm. The contribution of a song to a tag is
weighted by the salience of the tag within the song. However, since
Pandora provides binary labels, weights are either zero or one. In ad-
dition, [1] assumes a closed tag set; therefore, a background model
built from songs missing the tag in question provides a comparison
using a thresholded log-likelihood ratio (LLR) test. The authors cau-
tion the use of the phrase anti-model because Pandora does not list
all the attributes relevant to a song, but only a few of the most salient.
A better phrase is background or universal model.

4. EXPERIMENTS

4.1. Experimental Setup

A ten-fold cross validation is performed on a subset of the US-
Pop2002 dataset 3. Only songs which Pandora has tagged are consid-
ered. An artist filter ensures that no artist overlaps between the train-
ing and testing set for any particular fold. A total of 18 tags, shown
in Table 1, were chosen because each occurs at least 500 times in the
USPop2002 dataset; i.e., at least 50 examples in the test set for each
evaluation fold. Tags from Pandora have either a temporal or global
aspect, or both. A temporal aspect means the ordering of sounds
is important for the tag in question; whereas a global characteristic
deals with qualities that describe the overall sound of the music.

4.2. Performance Measures

Performance was measured in terms of equal error rate (EER) for
annotation and mean average precision (MAP) for retrieval. EER is

3http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
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Tag/Attribute Prop Base

major key tonality (TG) 34.54 42.76

electric guitar riffs (T) 40.78 54.30

minor key tonality (TG) 40.20 48.87

acoustic & electric instrumentation (G) 39.23 48.24

acoustic rhythm guitars (TG) 28.74 33.25

vocal harmonies (TG) 41.74 47.77

extensive vamping (T) 42.24 45.56

focus on studio production (TG) 39.24 43.53

subtle use of vocal harmony (TG) 41.15 43.68

mild rhythmic syncopation (T) 46.64 49.16

a vocal-centric aesthetic (G) 43.65 44.69

a dynamic male vocalist (G) 43.65 44.69

hard rock roots (TG) 19.13 19.44

melodic songwriting (T) 46.35 46.67

electric rock instrumentation (G) 35.20 34.70

acoustic rhythm piano (TG) 37.58 35.79
repetitive melodic phrasing (T) 44.59 41.92

Table 1. Results for each tag in terms of EER for proposed (Prop)
and baseline (Base). The letters in the parenthesis indicate whether
the tag is temporally (T) and/or globally (G) based. Bold face indi-
cates McNemar statistical significance.

the point at which the false acceptance rate and false rejection rate
are equal. MAP gives the precision at each recalled document. For
example, if the system returns the ordered results of [hit, miss, hit],
then the MAP is [1,0.5,0.67] and the MAP at level K = 2 is 0.5.
The McNemar’s test is a non-parametric statistical test to determine
whether two classifiers are significantly different and is shown to
have a low Type I error [11].

4.3. Annotation Results

The proposed approach performs better for annotation in terms of
equal error rate (EER) for 15 of the 18 tags, as shown in Table 1.
However, by comparing the temporal characteristics, more interest-
ing results are obtained. The table is organized by ranking the dif-
ferences in EER through the t-statistic so that the proposed approach
worked the best for the top tags when compared to the baseline ap-
proach. With the exception of mixed acoustic and electric instru-
mentation all tags appearing in the top half of the table contain tem-
poral aspects, showing the ability to capture temporal information
by the proposed approach. In addition, three of the four global tags
appear in the bottom half of the table. One possible, and encourag-
ing, reason as to why mixed acoustic and electric instrumentation
performed well with the proposed approach is because some of the
ASMs had a strong preference for songs that contained acoustic in-
struments and vice verse. The authors wish to exploit this property
in the future by having a separate vocabulary set for each tag, similar
to the parallel phone recognition and language modeling (PPRLM)
approach to language recognition [12]. Only four tags failed the Mc-
Nemar’s test (α = 0.05), which shows that for most tags, the best
performer is not due to randomness in the training and testing sets.

Another interesting result is that the best performing tags under
the proposed approach largely dealt with aspects of timbre, whether
global or temporal. Examples include electric rock instrumentation
(EER = 35.20) and acoustic rhythm guitars (EER = 28.74). The
worst performing tags dealt with melody (repetitive melodic phras-
ing (EER = 44.59) and melodic songwriting (46.35)) and rhythm

Fig. 2. Average ROC curves for the proposed approach (ASM),
baseline approaches (GMM), and the combined approach (Both),
which takes the best performing algorithm for each tag.

Proposed Baseline
Mean AP (K = 5) 0.4477 0.3313
Mean AP (K = 10) 0.4249 0.3321
Mean AP (K = 15) 0.409 0.3277

Table 2. Retrieval mean average precision at level K.

(mild rhythmic syncopation (EER = 46.64)). The authors conjecture
the poor performance in melody attributes is due to the choice in fea-
tures; i.e., MFCCs. Other features such as chromagrams [13] should
lead to superior performance. In addition, rhythm is largely affected
by the granularity of the segmentation algorithm. The maximum
likelihood segmentation algorithm in [8] is designed for segmenting
speech into subword units, such as phonemes. Therefore, the ASMs
tended to be very short and on the order of note onset, sustain, and
release [6]. In the future, the authors wish to investigate the use of
beat tracking and onset detection for the segmentation step.

The average ROC curves, taken as the average across the 18
tags, are shown in Figure 2 and compared to the case where the
best algorithm is chosen for each tag. The advantages of incorpo-
rating the temporal aspects in the proposed approach leads to better
performance. Further, there is no noticeable advantage in using the
baseline bag-of-frames approach for any tag. This demonstrates that
global characteristics are modeled well in the proposed approach.

4.4. Retrieval Results

An important application of semantic tags is retrieval, where one
searches by semantic tags and is returned a list of relevant songs. To
measure retrieval for both the proposed and baseline approaches, the
results for each tag are sorted by the score of the LLR test in the
case of the baseline approach and SVM scores in the case of the pro-
posed approach. Table 2 demonstrates that the proposed approach
performs better in terms of MAP at the levels considered.
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Fig. 3. Example of two similar melodies as a solo (lower waveform)
and with polyphonic ornamentation (upper waveform).

4.5. Temporal Analysis

The previous two sections demonstrates the proposed approach per-
forms better than the baseline bag-of-frames classifier for tags or
musical attributes that contain temporal aspects. This section investi-
gates how the proposed approach captures local timbral information
and identifies temporal structure.

Figure 3 shows two parts of similar songs with similar electric
guitar riffs. Specifically, the lower waveform is a solo with a single,
clean electric guitar and the upper waveform has an additional high-
hat and finger snap. The tokenization procedure finds an underlying
timbral melody with the sequence (x33, x70, x29, x119, x33). How-
ever, the upper waveform also has timbral embellishments. Specif-
ically, the finger snap at 41.9 seconds causes the insertion of the
sequence (x29, x94) between x119 and x33. Further, the high-hat
hit at 42.3 seconds causes the last x33 to repeat. By having a shared
acoustic vocabulary, the proposed approach is able to identify how
two musical pieces may have locally similar characteristics, even
when additional instruments are added. Note that timbral melody
refers to a sequential realization of timbral units and does not refer
to the usual notion of tonal melody. However, the authors wish to
investigate tonal melody by incorporating pitch-based features; i.e.,
chromagram.

Most importantly, unlike previous approaches to modeling the
temporal structure [5], the approach presented here is able to model
durations of sounds in a probabilistic sense, rather than a fixed
length. The advantage is best seen in the finger snap at 41.9 seconds,
which shortens the duration of x119 in the top waveform when com-
pared to the solo part in the bottom waveform. Under a fixed length
approach, one of two possibilities occur. Either the quantization
is too course (i.e., a small codebook is used) and the finger snap
would be smoothed over, or a large codebook is used and the entire
sound would map to a different ASM symbol, which changes the
underlying timbral melody. By incorporating temporal segmentation
probabilistically, the underlying melody still exists, but an inserted
ASM models the added finger snap.

5. CONCLUSION

An automatic tag annotation algorithm based on speech recognition
technology demonstrates the importance of incorporating temporal

information. The authors are especially encouraged by the fact that
tags which contain both temporal and global aspects perform better
with the proposed approach. In the future, the authors wish to build
a vocabulary for each tag to incorporate global timbre characteristics
as is done for the PPRLM approach to language recognition. In addi-
tion, the authors want to improve the initialization of the ASM mod-
els by incorporating beat-tracking software. These improvements
may increase the ability for rhythm and melody attribute detection,
possibly by incorporating research on MIDI melody retrieval.
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