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ABSTRACT

The general goal of music synchronization is to automatically
align the multiple information sources such as audio record-
ings, MIDI files, or digitized sheet music related to a given
musical work. In computing such alignments, one typically
has to face a delicate tradeoff between robustness and accu-
racy. In this paper, we introduce novel audio features that
combine the high temporal accuracy of onset features with the
robustness of chroma features. We show how previous syn-
chronization methods can be extended to make use of these
new features. We report on experiments based on polyphonic
Western music demonstrating the improvements of our pro-
posed synchronization framework.

Index Terms— Music synchronization, onset features,
chroma features, audio alignment

1. INTRODUCTION

In digital music libraries and private music collections, there
is an increasing number of documents available for a given
musical work. These documents may comprise various au-
dio recordings, MIDI files or score representations. Music
information retrieval (MIR) aims at developing techniques
and tools for organizing, understanding and searching this
multimodal information in a robust, efficient and intelligent
manner. In this context, various alignment and synchroniza-
tion procedures have been proposed with the common goal
to automatically link several types of music representations,
thus coordinating the multiple information sources related to
a given musical work [4, 5, 6].

In general terms, music synchronization denotes a proce-
dure which, for a given position in one representation of a
piece of music, determines the corresponding position within
another representation. Depending upon the respective data
formats, one distinguishes between various synchronization
tasks [5]. For example, audio-audio synchronization refers to
the task of time aligning two different audio recordings of a
piece of music. These alignments can be used to jump freely
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between different interpretations, thus affording efficient and
convenient audio browsing. The goal of MIDI-audio synchro-
nization is to coordinate MIDI note events with audio data.
The result can be regarded as an automated annotation of the
audio recording with available MIDI data.

In the design of synchronization algorithms, one has to
deal with a delicate tradeoff between robustness and temporal
accuracy. As first contribution, we introduce a novel class of
12-dimensional onset features, which combine the robustness
of conventional chroma features [1] with the accuracy of con-
ventional one-dimensional onset features [2]. These features
are obtained by identifying pitch-based onset information on
the chroma level (Sect. 2). As second contribution, we intro-
duce a synchronization framework that allows for improving
the overall synchronization accuracy without losing robust-
ness (Sect. 3). Here, the idea is to making the best of each
feature type when combining the various information. Our
experiments show that our synchronization procedure, which
integrates conventional chroma features as well as our novel
onset features, significantly improves the accuracy in partic-
ular for piano music while not collapsing for music that does
not contain clear note attacks (Sect. 4). Further related work
will be discussed in the respective sections.

2. AUDIO FEATURES

In order to synchronize different music representations, one
needs to find suitable feature representations being robust
towards those variations that are to be left unconsidered in
the comparison. In this context, chroma-based features have
turned out to be a powerful tool for synchronizing harmony-
based music, see [4, 5]. In summary, chroma features encode
the short-time energy distribution over the 12 traditional pitch
classes of the equal-tempered scale encoded by the attributes
C, C�, D, . . .,B. Furthermore, chroma features can be made
invariant to dynamic variations by normalization. For de-
tails we refer to the literature [5]. In the following, the first
six measures of the Etude No. 2, Op. 100, by Friedrich
Burgmüller will serve us as our running example, see Fig. 1a,
denoted by the identifier Burg2. Fig. 1b shows a normalized
chroma representation of an audio recording of Burg2.

In the following, we describe another class of highly ex-
pressive audio features that indicate note onsets along with
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Fig. 1. (a) First six measures of Burgmüller, Op. 100, Etude
No. 2. (b) - (g) feature representations of a corresponding
audio recording (see Sect. 2 for a description).

their respective pitch affiliation [5]. The feature extraction
procedure is motivated by the observation that for many in-
struments such as the piano or the guitar, playing a note re-
sults in a sudden energy increase (attack phase).

First, the audio signal is decomposed into 88 subbands
corresponding to the musical notes A0 to C8 (MIDI pitches
p = 21 to p = 108) of the equal-tempered scale, as in the
chroma feature calculation. Then, 88 local energy curves are
computed by convolving each of the squared subbands with
a suitable window function. Finally, for each energy curve
the discrete temporal derivative is calculated and half-wave
rectified (positive part of the function remains). The signif-

icant peaks of the resulting curves indicate positions of sig-
nificant energy increase in the respective pitch subband. An
onset feature is specified by the pitch of its subband and by the
time position and height of the corresponding peak. Fig. 1c
shows the resulting onset representation obtained for our run-
ning example Burg2. Note that the set of onset features is
sparse while providing information of very high temporal ac-
curacy. On the downside, the extraction of onset features is a
delicate problem involving fragile peak picking operations.

To enhance the robustness of the pitch-based onset fea-
tures, we add up the features belonging to pitches of the same
pitch class, as motivated by the chroma features. We first
evenly split up the time axis into segments of a fixed length
and take a suitable logarithm of the onset values, which ac-
counts for the logarithmic sensation of sound intensity. For
each segment, we add up the logarithmic values over all
pitches that correspond to the same chroma. The resulting
12-dimensional features will be referred to as CO (chroma
onset) features, see Fig. 1d. To make the CO feature invari-
ant to dynamic variations while keeping low level onsets we
employ a locally adaptive normalization strategy. First, we
compute the norm of each 12-dimensional CO feature vector,
see Fig. 1e (blue curve). Then, for each time frame, we as-
sign the local maxima of the sequence of norms over a time
window that ranges one second to the left and one second
to the right, see Fig. 1e (red curve). Finally, we divide the
sequence of CO features by the sequence of local maxima in
a pointwise fashion, see Fig. 1f. The resulting features are re-
ferred to as LNCO (locally adaptive normalized CO) features.
Intuitively, LNCO features account for the fact that onsets of
low energy are less relevant in musical passages of high en-
ergy than in passages of low energy. In summary, the octave
identification makes LNCO features robust to timbre and
extraction errors while still encoding 12-dimensional highly
accurate onset information. At this point, we emphasize that
the opposite variant of first computing chroma features and
then computing onsets from the resulting chromagrams is not
as successful as our strategy. The major reason for this is that
by first changing to the coarser chroma representation one
may already loose valuable onset information. For example,
suppose a clear onset in the C3 pitch band and some smearing
in the C4 band. Then, the smearing may overlay the onset on
the chroma level, which may result in missing the onset in-
formation. However, by first computing onsets for all pitches
separately and then merging this information, the onset of the
C3 pitch band will be clearly visible on the chroma level.

In view of synchronization applications, we further pro-
cess the LNCO feature representation by introducing an addi-
tional temporal decay. To this end, each LNCO feature vector
is copied n times and the copies are multiplied by decreas-
ing positive weights (in our experiments we chose n = 10
with weights (1,

√
0.9,

√
0.8, . . . ,

√
0.1)). Then, the n copies

are arranged to form short sequences of n consecutive feature
vectors of decreasing norm starting at the time position of the
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Fig. 2. (a)-(c) Illustration of the effect of the decay opera-
tion on the cost matrix level. (d) Cchroma, (e), CDLNCO (f)
Cchroma + CDLNCO for Burg2.

original vector. The overlay of all these decaying sequences
results in a feature representation, which we refer to as DL-
NCO (decaying LNCO) feature representation, see Fig. 1g.
The benefit of these additional temporal decays will become
clear in the synchronization context described in Sect. 3. Note
that in the DLNCO feature representation, one does not lose
the temporal accuracy of the LNCO features—the onset posi-
tions still appear as sharp left edges in the decays.

3. SYNCHRONIZATION ALGORITHM

In this section, we show how our novel DLNCO features
can be used to significantly improve the temporal accu-
racy of previous chroma-based synchronization strategies
without sacrificing their robustness. While we consider the
case of MIDI-audio synchronization in the following, other
cases such as audio-audio synchronization may be handled
in the same fashion. Most synchronization algorithms [4, 6]
rely on some variant of dynamic time warping (DTW) and
can be summarized as follows. First, the two music data
streams to be aligned are converted into feature sequences,
say V := (v1, v2, . . . , vN ) and W := (w1, w2, . . . , wM ),
respectively. Then, an N × M cost matrix C is built up by
evaluating a local cost measure c for each pair of features,

i. e., C(n,m) = c(vn, wm) for 1 ≤ n ≤ N, 1 ≤ m ≤ M .
Finally, an optimum-cost alignment path is determined from
this matrix via dynamic programming, which encodes the
synchronization result. See [5] for a detailed account on
DTW in the music context. For an illustration, we refer to
Figs. 2d-2f, which show various cost matrices along with
optimal alignment paths for our Burg2 example.

We now introduce three different cost matrices, where the
third one is a simple combination of the first and second one.
The first matrix Cchroma is a conventional cost matrix based on
normalized chroma features and the cosine distance [4, 5], see
Fig. 2d. The second cost matrix CDLNCO is based on DLNCO
features as introduced in Sect. 2. To compare two DLNCO
feature vectors, v and w, we now use the Euclidean distance
cDLNCO(v, w) := ||v − w||, see Fig. 2e. At this point, we need
to make some explanations. First, recall that each onset has
been transformed into a short vector sequence of decaying
norm. As an example, Figs. 2a and 2b show DLNCO features
for the very beginning of Burg2 for an audio and a MIDI ver-
sion, respectively. Using the Euclidean distance to compare
two such decaying sequences leads to a diagonal corridor of
low cost in CDLNCO in the case that the directions (i. e., the
relative chroma distributions) of the onset vectors are simi-
lar, see Fig. 2c. This corridor is tapered to the lower left and
starts at the precise time positions of the two onsets to be com-
pared. Second, note that CDLNCO reveals a grid like structure
of an overall high cost, where each beginning of a corridor
forms a small needle’s eye of low cost. Third, sections in the
feature sequences with no onsets lead to regions in CDLNCO

having zero cost. In other words, only significant events in
the DLNCO feature sequences take effect on the cost matrix
level and the structure of CDLNCO regulates the course of a
cost-minimizing alignment path in event-based regions to run
through the needle’s eyes of low cost.

The cost matrix Cchroma accounts for the rough harmonic
flow of the two representations, whereas CDLNCO exhibits on-
sets of the same chroma class. The sum C = Cchroma +
CDLNCO yields a cost matrix that accounts for both types of
information. Note that in regions with no onsets, CDLNCO

is zero and the combined matrix C is dominated by Cchroma.
Contrary, in regions with significant onsets, C is dominated
by CDLNCO. Therefore, the component Cchroma regulates the
overall course of the cost-minimizing alignment path and ac-
counts for a robust synchronization, whereas the component
CDLNCO locally adjusts the alignment path and accounts for
high temporal accuracy.

4. EXPERIMENTS

In this section, we report on some of our synchronization
experiments, which have been conducted on a corpus of
harmony-based Western music. To allow for a reproduction
of our experiments, we used pieces from the RWC music
database [3]. In the following, we consider 16 representa-
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RWC ID (Comp./Interp., Instr.) Chroma DLNCO Chroma+
DLNCO

mean std mean std mean std
Burg2 (Burgmüller, piano) 50 48 21 17 18 14
C025 (Bach, piano) 27 33 18 27 14 12
C028 (Beethoven, piano) 54 58 131 318 29 40
C031 (Chopin, piano) 57 64 22 68 22 33
C032 (Chopin, piano) 30 47 12 9 13 21
C029 (Schumann, piano) 46 72 94 264 15 36
Average over piano 44 54 50 117 19 26
C003 (Beethoven, orchestra) 116 96 241 338 116 98
C015 (Borodin, strings) 79 68 268 356 82 56
C022 (Brahms, orchestra) 50 54 26 52 17 20
C044 (Rimski-Korsakov, flute/piano) 41 17 22 19 27 15
C048 (Schubert, voice/piano) 55 50 70 173 31 34
Average over non-piano 68 57 125 188 55 45
J001 (Nakamura, piano) 34 59 17 37 14 15
J038 (HH Band, big band) 45 46 85 204 31 64
J041 (Umitsuki Quart., sax/bass/perc.) 39 67 37 117 23 55
P031 (Nagayama, electronic) 68 50 124 217 46 43
P093 (Burke, voice/guitar) 91 95 71 103 40 58
Average over jazz/pop 55 63 67 136 31 47
Average over all 55 58 79 145 34 38

Table 1. Alignment accuracy for the three different synchro-
nization procedures (Chroma, DLNCO, Chroma+DLNCO)
on the test database obtained from the RWC database [3]. All
values are given in milliseconds.

tive pieces, which are listed in Table 1. These pieces are
divided into three groups: six classical piano pieces, five clas-
sical pieces of various instrumentations, and five jazz pieces
and pop songs. Note that while pure piano music typically
comprises the concise note attacks the DLNCO features are
designed for, such information is often missing especially
in string and general orchestral music. We now show that
our extended synchronization framework leads to significant
improvements for piano music, while not losing on accuracy
for music lacking in clear note attacks.

In the following, we use three different synchroniza-
tion procedures based on chroma features only, on DL-
NCO features only, and a combination of these features
(Chroma+DLNCO), see Sect. 3. In each experiment we use
50 features per second, i.e., the features have a temporal res-
olution of 20ms. To automatically determine the accuracy of
our synchronization procedures, we used pairs of MIDI and
audio versions of each of the 16 pieces listed in Table 1. Here,
the audio versions were generated from the MIDI files using a
high-quality synthesizer. Thus, for each synchronization pair,
the note onset times in the MIDI file are perfectly aligned
with the onset times in the respective audio recording. We
randomly distorted the MIDI files by splitting up the MIDI
files into N segments of equal length (in our experiment we
used N = 20) and stretching or compressing each segment
by a random factor within an allowed distortion range (in
our experiments we used a range of ±30%). We refer to
the resulting MIDI file as the distorted MIDI file in contrast
to the original annotation MIDI file. We synchronized the
distorted MIDI file and the associated audio recording and
used the resulting alignment path to adjust the note onset
times in the distorted MIDI file and to obtain a third MIDI
file referred to as realigned MIDI file. The accuracy of the
synchronization result is then determined by comparing on-

set times of corresponding notes in the realigned MIDI file
and the annotation MIDI file. For each of the 16 pieces
and for each synchronization procedure Table 1 shows the
mean value and the standard deviation over all absolute onset
differences. Note that using a combination of chroma and
DLNCO features significantly improves the synchronization
accuracy: the average onset error for piano music drops from
44ms (Chroma) to 19ms (Chroma+DLNCO). For orchestral
or pure string music without clear note attacks, the DLNCO
features do not yield any valuable information. For example,
in the case of Borodin’s String Quartet (C015), the onset error
increases from 79ms (Chroma) to 269ms (DLNCO) when us-
ing only the onset features. However, in the combined case,
the chroma features overrule the corrupt DLNCO features
leading to an onset error of 82ms (Chroma+DLNCO) that is
comparable to the chroma only case.

In conclusion, our experiments show that the combina-
tion of using chroma and DLNCO onset features significantly
improve the synchronization accuracy for music with clear
note attacks and does not degrade for music which lacks this
information. At this point, one may object that one typically
obtains better absolute synchronization results for synthetic
audio material (which was used to completely automate our
evaluation) than for real audio recordings. We also tested
our synchronization on real audio recordings of all 16 pieces,
which actually led to similar results as the synthesized exam-
ples. Sonifications of the MIDI-audio synchronization results
for the real audio files of the 16 pieces have been made avail-
able on the website http://www-mmdb.iai.uni-bonn.

de/projects/syncDLNCO/.
For the future, we will incorporate other types of fea-

tures that capture local rhythmic information and smooth note
transitions for orchestral, string, or brass music [7]. Here,
our synchronization framework allows for making the best of
each feature type when combining the various information.
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