
LSH BANDING FOR LARGE-SCALE RETRIEVAL
WITH MEMORY AND RECALL CONSTRAINTS

Michele Covell and Shumeet Baluja

Google Research, Google Inc.
1600 Amphitheatre Parkway, Mountain View CA 94043

ABSTRACT

Locality Sensitive Hashing (LSH) is widely used for ef�cient re-
trieval of candidate matches in very large audio, video, and image
systems. However, extremely large reference databases necessitate a
guaranteed limit on the memory used by the table lookup itself, no
matter how the entries crowd different parts of the signature space,
a guarantee that LSH does not give. In this paper, we provide such
guaranteed limits, primarily through the design of the LSH bands.
When combined with data-adaptive bin splitting (needed on only
0.04% of the occupied bins) this approach provides the required
guarantee on memory usage. At the same time, it avoids the reduced
recall that more extensive use of bin splitting would give.

Index Terms— Multimedia databases, Information retrieval,
Fingerprint identi�cation, Pattern matching

1. INTRODUCTION

Many approximate nearest-neighbor problems require candidate re-
trieval under tight memory and computation constraints [1, 2, 3].
Most notable among these are audio and video retrieval systems that
must handle both time-based editing (excerpts and mash-ups) and
frame-based editing (visual overlays and audio re-mixes). For partial
matches across time, the size of the database must grow according
to the number of minutes of content, instead of just according to the
number of distinct clips, leading to billions of entries. Due to the
large size of the reference set, we need to know that we will never be
required to read back more than a small fraction of that set, no matter
how these entries crowd different parts of the signature space.

Data-adaptive tree structures, such as spill trees [4], can be used
to limit the maximum number of retrieved candidates, using the vari-
able depth to subdivide crowded portions of the space. However, the
recall rate for such adaptive tree approaches is dif�cult to monitor,
since the radius of retrieval in each region is not known before con-
struction of the tree. For applications like partial-copy detection,
where high and predictable recall rates are needed, we propose us-
ing data-adaptive approaches only when even careful design of non-
adaptive tables fail to meet our memory limits.

Locality Sensitive Hashing (LSH) [5] provides predictable recall
rates, since the retrieval characteristics are de�ned by the off-line
design of the hash keys. With LSH, each reference entry is inserted
into L tables using different subspace projections. The simplest and
most computationally ef�cient projections are axis parallel: from a
BL-dimensional signature, B distinct dimensions are taken for each
of L LSH “bands”. Our work uses axis-parallel projection, since it
supports our discrete-valued, non-ordinal signatures [2, 6].

We propose to use LSH, with off-line optimization of the hash
subspaces, in order to minimize the worst-case expected crowding.
We also use (on-line) data-adaptive bin splitting, as required by

the actual reference database and our memory guarantees. Most
of this work focuses on the selection of the hash subspace to limit
the expected, worst-case crowding in the LSH tables. While axis-
parallel projection limits the set of possible distinct hash subspaces
to

QL−2
l=0

`
B(L−l)−1

B−1

´
, that number is still unmanageably large for

our operating point [2], giving 1.9x1098 distinct 25x4 possible
groupings. The size of this space leads us to use a greedy solution.

In a closely related problem [1], a greedy approach was also
taken to select among the hash-subspace possibilities. In that work,
the reward criteria was minimum within-band mutual information,
thereby maximizing the number of bits of entropy across the group
of hash tables and minimizing the average candidate-list length. As
will be seen in Figure 3, minimizing mutual information does not
minimize the worst-case memory usage for a look up.

To minimize this worst-case cost, our reward function focuses
on providing the smallest-size, and smallest number of, overfull LSH
bins. We select a submodular reward function, based solely on these
overfull bins. This submodular property both improves the speed
of each search for groupings (effectively allowing additional search
without prohibitive training time) and provides a bound on how far
below optimal our solution is. By bounding the optimum solution,
we know how much loss we suffer from any proposed solution. This
bound on the optimal, taken from the greedy solution, can be com-
bined with “seeded” greedy search, providing both ef�cient search
into improvements on the fully greedy solution and a stopping crite-
ria on an outer search for a good seed.

Section 2 reviews submodularity, how this property allows ef�-
cient evaluation of greedy solutions, and the bound provided by the
submodularity. Section 3 reviews the speci�cs of our problem and
introduces our submodular reward function. Section 4 introduces
an ef�cient approach to representing the above-threshold portions of
our LSH frequency distributions, which is needed to support ef�-
cient evaluation on this problem. Section 5 discusses seeded greedy
search, to improve on our basic greedy solution. We provide ex-
perimental results in Section 6, using data-adaptive bin splitting to
handle any remaining occupancy violations. Section 7 concludes
and proposes future directions for study.

2. SUBMODULAR REWARD BOUNDS AND
EFFICIENT GREEDY SEARCH

Since the optimal solution to our grouping problem is NP-hard, we
take a greedy approach to �nding a “good” solution. For general
reward functions, even �nding the greedy solution requires O(n2)
evaluations of that reward function (with n = LB for our problem).
In this section, we review submodular-reward functions, which pro-
vide an ef�cient way to �nd the same greedy solution that would
have been found by the O(n2) evaluation but uses only O(n) evalu-
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ations and, more importantly, which provide bounds on how far from
optimal a greedy solution can be.

Submodular reward functions have been proposed since 2004 for
greedy solutions [7]. A submodular reward function, R() compares
the reward of adding an elementC to possible solution setsA and B,
where A ⊆ B. For a submodular reward function, the incremental
reward for adding C to solution B is always less than or equal to the
incremental reward for addingC to solutionA: R(B∪C)−R(B) ≤
R(A∪C)−R(A). If we use a greedy algorithm to �nd the solution
to a problem with submodular reward structure, we are guaranteed
to be within (1 − 1/e) of the reward of optimal solution [7] (which
is NP-hard to �nd).

Furthermore, as Leskovec, et al. [8] describe, we can �nd the
greedy solution more ef�ciently than is possible with more gen-
eral reward structures by using this decreasing incremental-reward
characteristic to sort our solutions, without full re-evaluation at each
step. A version of dynamic programming, Cost-Effective Lazy For-
ward (CELF) evaluation maintains a list of available candidate steps,
sorted based on the recorded incremental reward of that step. This
sort mixes together current and out-of-date incremental reward val-
ues. If the best next step has an out-of-date reward, its incremental
reward is re-evaluated and it is bubble sorted down the list. If the best
next step has a current reward, it is guaranteed to be the best step for
a greedy approach. We take that candidate step (removing it from
the available list) and update the remaining candidates. Candidates
that would have used the just-taken dimension are removed. If the
just-updated LSH band is full, remaining candidates for that band
are removed from the list; otherwise, their incremental rewards are
marked as out-of-date. In this way, many steps can be taken towards
the greedy solution without re-evaluation of the full set of possible
rewards. Since we use a submodular reward, we can sort together
a mixture of out-of-date and current incremental reward values and
know that, when the best candidate addition has a current reward, it
will also be the best candidate addition over all current possibilities.

3. SUBMODULAR REWARD FUNCTION FOR
MINIMIZING ABOVE-THRESHOLD OCCUPANCIES

Our reward function should control the number and size of over-
full LSH bins. We quantify this by setting a threshold, th, on the
LSH-bin occupancy, h: LSH-band bins with occupancy below th are
ignored, since they do not contribute to the worst-case costs. Above
this threshold, we create a reward function that decreases according
to −2f(x) where x = h/th and d

dx
f(x2) ≥ d

dx
f(x1) ∀x2 >

x1 ≥ 1. Using a super-linear function of the above-threshold ratio
as an exponent rewards splitting large bins into multiple smaller bins,
even if all of the smaller bins are above threshold. This corresponds
to the desired penalty behavior: even though we conceptually do
not want any bin occupancy to be above threshold, it is much worse
to have a single bin far above threshold than to have multiple bins
somewhat above threshold, since the �rst case will result in much
larger variance in the total candidate-list length than the second case,
for any �xed look-up list.

We make this family of reward functions submodular, despite
the bin-occupancy thresholding, by offsetting the reward by 2f(1),
so the reward is zero at x = 1. Without this offset, the reward is
discontinuous at x = 1, destroying the submodular property. With
the offset, the reward is zero for x ≤ 1: it is zero at x = 1 by virtue
of the offset and it is zero for x < 1, since these values are excluded
from our evaluation.

As will be discussed in Section 6, even with our best grouping
solution, we will still have “hot spots”. We address this in our �-

nal system by allowing data-adaptive LSH bin splitting to ensure our
operational limits are not exceeded. For these hot-spot locations, we
extend the hash key by the values from additional signature dimen-
sions. As much as possible, we wish to avoid this solution, since it
has the same uncertain recall as other data-adaptive structures [4].
Therefore, this investigation has focused on how well we can �atten
the LSH lookup table occupancy before expanding the banding keys.

In summary, a family of submodular reward functions on the
thresholded occupancy space gives the desired behavior:

R(H) = −P
i|xi>1(2

f(xi) − 2f(1))

where xi = hi/th is the scaled LSH occupancy for the ith bin.
For the results in Section 6, we used th = 0.01% of the training
population and f(x) = x log2 x. Since the dynamic range of this
reward function is very large, we implemented its evaluation in the
log space.

4. EFFICIENT ABOVE-THRESHOLD HISTOGRAM
REPRESENTATION AND UPDATE

One issue with using detailed LSH-bin occupancies, instead of
expectancy-averaged statistics as were used in [1], is that the occu-
pancy of the LSH tables must be represented and updated with each
candidate change to how the LSH band is formed. The number of
candidates that must be evaluated are as high as BL2 on the �rst
step (BL available dimensions crossed with L available groups) and
decrease from there.

Since the distributions that we are working with are very non-
uniform, we can ef�ciently represent the portion of the table on
which our penalty is computed by listing the bin key for only those
bins that are at above-threshold occupancy. The distributions us-
ing candidate extensions to the LSH-band key are then ef�ciently
evaluated, starting from the current listing of overfull band keys and
mapping the new distribution using only those signatures that fell
into one of those bins, now split according to the proposed addition
to the LSH-band key. Finally, this map of the subdivided problem-
atic bins is scanned to create the new list of overfull bins (now in the
extended LSH-band space). This will �nd all of the overfull bins in
this new space, without a complete re-mapping of the full training
set, since adding a dimension can only reduce bin occupancies.

For our experiments (Section 6), the number of overfull bins
peaks at 1000-4000, when the LSH-band key is only two dimen-
sions. That number drops as additional dimensions are added and
the subdivisions of the overfull bins all fall below threshold. How-
ever, even with 1000-4000 overfull bins, the number of overfull bins
requiring evaluation is a small and decreasing count, in both absolute
and relative numbers.

As we go through the greedy process for grouping the dimen-
sions, we keep these lists of overfull bins only for the current ac-
cepted LSH bands, discarding those for the candidate steps. This
reduces the memory used during training, allowing for larger train-
ing sets. Instead of using large amounts of memory, we re-compute
the overfull-bin lists for the accepted candidates as they are accepted
into the solution.

5. SEEDED GREEDY SEARCH

Our reward surface has many local optima, making greedy search
error prone. However, since our reward function is submodular, we
know that the optimum solution is, at most, 63% better than the
greedy solution. This bound can limit our search for better solutions,
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after evaluating the greedy solution. In addition, with our submod-
ular reward structure, we can use CELF to ef�ciently �nd the best
greedy-search completion from any “seed” from which we wish to
start searching. By using combination of bounding (for termination)
and ef�cient greedy completion of solutions, we ef�ciently guide our
search into other parts of the space.

To get our bound, we �rst evaluate the fully greedy solution,
starting our search without seeding. This greedy solution actually
provides a comparatively low-reward solution. The intuition behind
this is that the fully greedy process in effect wastes its most power-
ful tools — the most uniform signature dimensions — on the �rst
L steps, by initializing the previously empty bands. This is less
effective than using these dimensions slightly later in the solution,
when the LSH bins that will become problems can be (slightly) bet-
ter understood. For once, this low-reward on a greedy solution is the
desired behavior, since it gives us a tighter limit on the maximum
possible reward that can be achieved. We use that bound to stop our
subsequent search for a good seeded greedy solution at 90% of the
optimal-reward bound.

We then restart our greedy search using seeded bands: that is,
starting from L partially �lled LSH bands. To avoid an outer com-
binatoric search for good seeds, we only examined seeds of one di-
mension in each of the L bands that we had reason to believe might
provide good solutions. Our choices for seeds were:

• Lowest-entropy dimensions: By picking these �rst, we forced
the dimensions with the worst average clumping apart. By
bringing the problem cases to the start, those problems can be
explicitly targeted throughout the greedy-selection process.

• Lowest-reward dimensions: This addresses the worst of the
worst-case clumping, instead of the worst of the average-case
clumping.

• Sequential lowest-reward dimensions: With this approach,
we selected the group seeds sequentially, looking at the set
of incremental rewards for adding each dimension to each
(already seeded or unseeded) group and selecting the next
seeding dimension as the one with the lowest minimum re-
ward. This was similar to the lowest entropy set but differed
on some of the selections. The difference was due to some
low-reward dimensions actually being more effective taken
together than taken with other slightly-higher-reward dimen-
sions.

We also tried some random initializations of the L bands, followed
by greedy search to complete the solution. However, most random
seeds led to solutions that were worse then the fully greedy solution.
All random-seeded solutions were worst than those found using the
above seeds.

We hoped to stop our search for seeds when a seeded greedy
solution was 10% of our bound on the optimum (given by the fully
greedy solution). As mentioned in Section 6, we instead stopped
after having run through all of our seeds.

6. RESULTS

We examined two data sets of 150,000 signatures, taken from 3000
distinct media tracks sampled once per second. The �rst popula-
tion is used to �nd the LSH bands. The second, independent set,
is used only for testing. The 100-dimensional signatures were gen-
erated using an approach similar to what is described in [2]. The
two worst- and best-distributed individual signature dimensions are
shown in Figure 1. We compare the CELF approach with banding
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Fig. 1. The two most non-uniformly distributed dimensions in the
100-dimensional signature (left), as well as the two most uniformly
distributed ones (right).

by randomly selecting groups of 4 dimensions and with banding for
minimum within-band mutual information (min.-mutual banding),
as proposed by [1].

To do the CELF modeling, we set the threshold on the CELF ap-
proach to 0.01% of the training set. This is below our required oper-
ational limit, in order to provide better robustness to differences be-
tween the training distribution and the operational distribution. We
used the seeded greedy search, as described in Section 5. Seed se-
lection using sequential lowest reward gave the best solution, which
was about 20% better than the fully-greedy solution. That improve-
ment did not put the seeded greedy solution within our hoped-for
90% limit (relative to the fully-greedy bound on the optimal solu-
tion). This seems surprising, given the large dynamic range of our
reward function. However, there were 4 bins that contributed the vast
majority of the penalty on our greedy solutions. These worst-bins re-
mained at occupancy levels of 0.12-0.2% of the full population for
all of our seeded solutions. All bins would need to be reduced to
below 0.12% occupancy to achieve our target of 90% of the optimal
bound. The sequential lowest reward got closest to that by contain-
ing these occupancies to the range of 0.12-0.16%.

The results from the sequential-lowest-reward seed, applied to
the test set, are shown in Figure 2 and 3. Figure 2 shows the entropy
of the test population across the LSH bands (sorted from greatest to
least). The average entropy across all the bands is almost unchanged
by the different approaches. However, due to variation in the band
entropy, the average candidate list length for the random banding
will be about 4% longer than the min.-mutual banding. The average
candidate list length for CELF banding is also worse than for the
min.-mutual banding: the average length will be about 1% longer.
This larger average length is expected, since the min.-mutual method
was designed to address the average case.

Figure 3 shows the worst-case occupancy of the test population
in the largest LSH-band bins. This plot shows the improvement that
is achieved using the explicit attention to these worst-case occupan-
cies. The number of bins that were at an occupancy level that creates
memory problems went down from 0.17% of the occupied LSH bins
for random banding, to 0.12% using min.-mutual banding, to 0.04%
using CELF banding. More importantly, the worst-case occupancy
level went down from 0.25% for both random and min.-mutual band-
ing to 0.16% for CELF banding. Since it is this maximum occu-
pancy at the per-bin level that de�nes what our worst-case memory
usage will be, this reduction in maximum retrieval length is critical.
Most importantly, the number of entries that were in these worst-
case bins was reduced from 12% for random banding, to 8% using
min.-mutual banding, to 2.5% using CELF banding. Since the distri-
bution of the expected lookups into the LSH tables is the same as the
distribution of the entries, this reduction in the percentage of lookups
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Fig. 2. Distribution entropy for the bands created by random associ-
ation (blue dotted circles), min. mutual (green dashed triangles), and
CELF (red solid squares). Minimum mutual information does best
by this measure since it optimizes the average case, which is what
entropy measures.

that will see the worst-case memory usage is also critical.
Even with this CELF solution for minimizing the worst case oc-

cupancy, we continue to see a subset of bin occupancies above the
level that can be easily supported in a large-scale system. For these
problem cases, we combine the techniques used in data-adaptive
structures, like spill trees [4], with LSH banding. When creating the
LSH table, if a bin exceeds a threshold set by our operational con-
straints, then the bin is marked as “expanded” and the previous en-
tries are re-indexed into bins corresponding to the current LSH band
plus an additional signature dimension. Which dimensions are used
to expand each LSH band is selected off line, again based on train-
ing data, but the actual subdivision of any given bin is done based
on operational conditions. When a lookup encounters an expanded
bin, it will retrieve the reduced set of results from the subdivided bin.
This approach has the same disadvantage of data-adaptive structures,
that the recall radius is not known before the table is built. However,
when we used this approach in combination with the CELF-selected
bands, we saw no change in our actual recall rates on our regression
tests, most likely due to the small percentage of lookups affected by
the the adaptive-bin splitting (only 2.5%, due to our band design).

7. CONCLUSIONS

We have presented an approach to designing LSH bands, based on
a given population of signature dimensions. The approach explicitly
targets the worst case retrievals that result in too-long candidate lists
being retrieved from these tables. This worst-case set is what must
be examined to design a practical large-scale audio or video retrieval
system, where the output from the LSH tables themselves represent
a signi�cant consumption of resources.

Using a submodular reward function to characterize the above-
threshold bin occupancy provides two signi�cant advantages. First,
it provides an upper bound on our best possible solution, thereby
giving an indication of how much might be gained from a more
complete search. Second, it allows us to �nd the greedy solution
ef�ciently, freeing the training-time resources that would have oth-
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Fig. 3. Occupancy of largest bins for the bands created by random
association (blue dotted circles), min. mutual (green dashed trian-
gles), and CELF (red solid squares). CELF does best since it mini-
mizes the worst cases. This is what we must design for operationally.

erwise been used in �nding the �rst solution to evaluate alternatives.
A direction for future work is to evaluate the effect of changing

the reward function. Another is to expand the set of starting seeds
that are evaluated by our greedy search. A third direction would be
to work towards an occupancy representation that allowed ef�cient
evaluation for simulated annealing or other stochastic optimization
approaches to search: with such a representation we would be less
likely to fail due to a poor seed or to the greedy search trapping us in
a local maxima.
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