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ABSTRACT

The reduced-reference (RR) approximation of a full-reference (FR)
video quality assessment method is a convenient way to build evalu-
ation metrics which are both intrinsically well correlated with human
judgments and feasible to implement in a network scenario, without
the need to explore the perceptual significance of new video features
through mean opinion score tests. In this paper, we propose a RR
approximation of the video structural similarity index (VSSIM), a
FR metric which is known to be well descriptive of the video quality
perceived by users. We focus on the visual degradation produced
by channel transmission errors: first, at the encoder, a small set of
salient structural video features is assembled and transmitted through
the RR channel to the end-user; then, at the decoder the feature vec-
tor is combined with a fine-granularity, no-reference estimate of the
channel-induced distortion to produce the VSSIM approximation.
By uniformly quantizing the feature vector and compressing it using
a context-adaptive, variable length encoder, we show that good cor-
relation coefficients with ground-truth VSSIM (ρ = 0.85) may be
achieved spending, respectively, less than 12 and 27 kbps for a video
sequence with CIF or SD resolution.

Index Terms— Video signal processing, Video coding

1. INTRODUCTION

The estimation of the perceived quality of video sequences is a
crucial task when visual contents are transmitted over communi-
cation networks, where annoying artifacts in the received video
stream may be introduced due to channel errors or jitter. In the last
decades, a great deal of effort has been made to develop objective
video quality assessment techniques [1] which resemble perceptual
judgments given by human observers more accurately than the tra-
ditional PSNR, whose correlation with Mean Opinion Score (MOS)
tests is notoriously poor [2]. Most of these techniques – known as
full reference (FR) methods because, to be computed, they require
the complete availability of the original (reference) signal at the de-
coder – have been recently tested by the video quality experts group
(VQEG) [3] in their full reference television (FRTV) phase 2 tests
[4]. In practice, FR methods are hardly implementable by a decoder
in a network scenario, since the end-users do not have access to
the original frames at their terminals. Therefore, in the literature
two alternative solutions have been proposed to estimate the quality
at the decoder: no-reference (NR) methods and reduced-reference
(RR) methods.
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In NR methods, the end-user tries to infer the distortion of the re-
ceived frames from just the reconstructed video available at the out-
put of the decoder or from the transmitted bitstream itself, without
any sort of access to the original video. These techniques can be eas-
ily integrated into existing broadcasting systems, but generally lack
in estimation accuracy. Specific NR methods have been proposed to
estimate the distortion introduced by video coding [5, 6] or to take
in consideration the effects of channel losses [7]. We have recently
proposed a NR system [8] for H.264/AVC video sequences which
models the effect of temporal concealment to estimate the channel-
induced distortion at the decoder; this method has been subsequently
expanded in [9] and, since it acts as a substratum for the proposed
quality assessment system, it will be briefly summarized in Section
2.2.

In contrast with NR methods, RR techniques can achieve a more
accurate distortion estimation by using some feature vector extracted
from the original bitstream that is made available at the decoder side
through an ancillary, low bit-rate, noiseless data channel. RR meth-
ods can be either designed independently with respect to pre-existing
FR methods [10, 11] or as an approximation of some FR metrics as in
[12]. The methods developed using the first approach are specifically
conceived to target the peculiarities of the RR scenario, but need to
be matched against MOS tests for their effectiveness to be validated.
On the other hand, for RR techniques which approximate FR meth-
ods it is sufficient to exhibit good correlation between RR scores and
FR ground-truth data, since the correlation between FR scores and
MOS is supposed to have already been assessed elsewhere.

In this paper, we propose a RR method which takes inspiration
from the second approach described above in the fact that it approxi-
mates a popular objective perceptual quality assessment method, the
video structural similarity index (VSSIM) [13], whose correlation
with MOS has been exhaustively proved. In order to do this, we col-
lect a few significant features from each video frame and transmit
them to the decoder, where they are used to estimate the VSSIM by
leveraging the side information provided by a NR distortion estima-
tor. To keep the size of the RR information small, different tech-
niques have been used in the literature, such as non-linear quantiza-
tion [12] or distributed source coding [14]. In the proposed system
we uniformly quantize the DCT-transformed DPCM residuals, and
encode them with a variable-length, context-adaptive entropy coder,
as the CABAC module of H.264/AVC [15].

The rest of this paper is organized as follows: Section 2 de-
scribes the building blocks of the proposed RR quality assessment
system; Section 3 illustrates the performance of our method in terms
of correlation with the VSSIM and rate spent for the RR information;
finally, Section 4 gives some concluding remarks.
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Fig. 1. The building blocks of the proposed RR quality assessment system.

2. SYSTEM DESCRIPTION

The proposed video quality assessment system is illustrated in Fig-
ure 1. The original video frame Xn is encoded and transmitted
through a noisy channel that drops the coded packets according
to a given packet loss rate (PLR). During the encoding process,

the error-free reconstructed frame X̂n is fed into the features ex-
traction and coding module which computes, for the luminance
component of each macroblock i, belonging to frame n, its aver-
age (μx(i, n)) and standard deviation (σx(i, n)). The ensemble of
μx(i, n) and σx(i, n) represents the RR feature vector which is
encoded and transmitted through the noiseless RR channel. At the
receiver terminal, the transmitted video is decoded and fed, together
with side information extracted during the decoding process, into
the no-reference distortion estimation module [8]. The output of this

module consists in an estimate D̂i
n of the mean square error (MSE)

between the error-free reconstructed macroblock and its decoded
counterpart. From the decoded frame X̃n, the features μx̃(i, n) and
σx̃(i, n) are extracted and, together with the ones received through
the RR channel, are used in the VSSIM computation module to cal-
culate a RR approximation of the VSSIM at the frame level. Finally,
with the additional information provided by the motion vectors, the
frame-level VSSIM’s are aggregated to compute the approximate
metric at the sequence level.

2.1. VSSIM approximation

The structural similarity index (SSIM) was initially proposed for still
images [16] and successively extended to video sequences with the
name of video SSIM or VSSIM [13]. The core idea of the structural
similarity metric is to compare the reference and distorted video sig-
nals from a structural distortion point of view by computing a prod-
uct of independent terms, namely the luminance, the contrast and the
similarity between two images. This leads to the following SSIM
formula between signals x and x̃:

SSIM(x, x̃) =
(2μxμx̃ + C1)(2σxx̃ + C2)

(μ2
x + μ2

x̃ + C1)(σ2
x + σ2

x̃ + C2)
, (1)

where μx and μx̃ are, respectively, the mean values of x and x̃, σ2
x

and σ2
x̃ represent their variances and σxx̃ is the covariance between

the two signals. The two constants C1 and C2 are added to avoid
possible division by zero, and are selected as in [13]. In the full-
reference VSSIM, the signals x and x̃ are the luminance values of
8 × 8 sliding windows, moved pixel by pixel on, respectively, the

error-free frame X̂n and the decoded frame X̃n. Equation (1) is the
basic ingredient to calculate the video SSIM, which is obtained by
aggregating the SSIM either at the frame or sequence level, taking
into account that dark regions of a frame do not attract fixation and
errors in fast moving scenes are less annoying than errors in a still
or slowly moving background. Clearly, (1) can be computed only
when both the original signal x and its degraded version x̃ are avail-
able at the decoder. With respect to this full-reference statement of
the VSSIM metric, the proposed RR quality assessment algorithm
differs in the following points:

1) The feature vector, consisting of μ and σ, is computed over a
disjoint grid of 16 × 16 macroblocks. We have found in our exper-
iments (see Figure 2) that the VSSIM computed in this way closely
approximates the one that would have been obtained by implement-
ing it as described in [13].

2) At the receiver side, the original, error-free frame X̂n is not
available for comparison and thus the values μx and σx are un-
known. To produce the RR approximation we first transform μx

and σx for each frame in the DCT domain, to exploit the spatial
correlation between features; the transformed coefficients are passed
through a DPCM encoder and the prediction residuals are uniformly
quantized and entropy-coded with a context-adaptive, arithmetic en-
coder. At the decoder, the reconstructed features are μ̂x and σ̂x.

3) In the RR approximation, also the covariance term σxx̃ cannot
be calculated. However, by the covariance definition and after a little
algebra we can write:

σ̂xx̃(i, n) =
1

2

[
(σ̂x(i, n))2 + (σx̃(i, n))2

+ (μ̂x(i, n) − μx̃(i, n))2 − D̂(i, n)
]
, (2)

where the term D̂(i, n) denotes the estimate of the channel induced
distortion provided by the No-reference distortion estimation algo-
rithm proposed in [8].

4) The quantization of μx and σx, as well as the estimation er-

ror in D̂(i, n), have the effect of introducing a bias in the estimated
VSSIM with respect to the original metric. Through experimental
tests we have verified that this bias depends more on the quantiza-
tion step used for the means rather than on the one used for standard
deviations; furthermore, it comes out that this bias is independent
from the tested sequence or from the specific degradation pattern of
the received video. To overcome this bias, we use have estimated a
single look-up table containing the estimated biases for each quanti-
zation step size used to encode μx and σx.
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Fig. 2. The VSSIM estimated over 16 × 16 disjoint blocks vs. the

original full-reference metric.

2.2. No-reference distortion estimation

In [8] we proposed a NR quality monitoring algorithm to estimate
the distortion induced by channel losses. The estimation process
is specifically designed for motion-compensated predictive (MCP)
video codecs as those belonging to the MPEG-x and H.26x families.
The algorithm provides, for each macroblock i of frame n, an esti-

mate of the channel induced distortion D̂(i, n) assuming the MSE
as distortion measure. The estimation process explicitly accounts
for the distortion induced by temporal error concealment, the lack
of both motion vectors and prediction residuals as well as the error
propagation due to the predictive nature of modern video codecs.
This technique has been improved and further extended in [9] in or-
der to account for the distortion induced by spatial concealment (i.e.
the concealment typically used in intra coded slices [17]). The over-
all algorithm can be easily integrated in any MCP decoder compliant

with the adopted standard. Finally the estimated D̂(i, n) is used to
compute the RR VSSIM approximation as described in Section 2.1.

3. RESULTS

The performance of the proposed RR VSSIM approximation has
been tested by simulating the errors produced by the transmission
of a video sequence over a broadcasting network. Before discussing
the results obtained, we briefly describe the source coding and trans-
mission conditions adopted in the paper.

3.1. Source and transmission conditions

In our experiments a CIF and a 625-SD (standard definition) video
sequences, respectively Soccer and Mobile & Calendar, have been
coded with the H.264/AVC video coding standard with the Baseline
profile and the reference software in [17]. The 300 frames of the Soc-
cer sequence have a frame rate of 30 Hz, with an intra frame every 15
frames, and are coded at 256 kbps. Conversely, the 220 frames of the
Mobile & Calendar sequence are coded at 25 fps, with an intra frame
every 15 frames, spending a bit-rate of 4 Mbps. Every coded frame
is divided into slices where each coded slice contains a horizontal
row of macroblocks and corresponds to a transmitted packet. The

QP(�) 
QP(�) 25 30 35 40 45 51 

20 0.98 0.97 0.97 0.96 0.97 0.94 
25 0.97 0.97 0.97 0.95 0.95 0.94 
30 0.94 0.94 0.94 0.93 0.91 0.88 
35 0.91 0.88 0.86 0.83 0.83 0.83 
40 0.9 0.87 0.86 0.81 0.78 0.77 
45 0.9 0.86 0.85 0.8 0.77 0.75 
51 0.88 0.84 0.84 0.75 0.71 0.69 

Table 1. Linear correlation coefficients for the Soccer sequence.

QP(�) 
QP(�) 25 30 35 40 45 51 

20 0.97 0.95 0.92 0.91 0.91 0.90 
25 0.96 0.94 0.91 0.91 0.89 0.88 
30 0.94 0.94 0.90 0.86 0.83 0.82 
35 0.94 0.94 0.89 0.86 0.83 0.82 
40 0.93 0.93 0.89 0.85 0.82 0.82 
45 0.93 0.92 0.88 0.84 0.81 0.81 
51 0.92 0.92 0.83 0.79 0.78 0.77 

Table 2. Linear correlation coefficients for the Mobile sequence.

packets are then packetized according to the real-time transfer pro-
tocol (RTP). The simulated error-prone channel drops coded packets
according to a packet loss rate (PLR) equal to 2.5%, with error pat-
terns generated according to a two state Gilbert’s model [18] with
average burst length of 3.1 packets. To encode the feature vector
as described in Section 2.1 we quantize DCT-transformed DPCM
residuals of the features. The step-size Δ of the dead-zone quan-
tizer follows an exponential law through a QP parameter as in the
H.264/AVC standard:

Δ = 2
QP−4

6 . (3)

As for the entropy coding of the quantized transformed residuals, we
use the context-adaptive binary arithmetic coder (CABAC) module
of the H.264/AVC standard [15].

3.2. Experimental results and discussion

In order to measure the accuracy of the VSSIM estimation, we
have measured the Pearson’s correlation coefficient ρ between the
full-reference metric and its reduced-reference approximation. Ta-
bles 1 and 2 show the correlation coefficients for the two tested
video sequences, when different quantization parameters QP (μ)
and QP (σ) are used, respectively, to determine the quantization
step size used in the encoding of μx and σx as in (3). For both
sequences, as QP increases the correlation with the FR metric de-
grades. Furthermore, the quantization of the elements of the feature
vector produces different effects on the correlation, as the VSSIM
approximation is more tolerant to quantization noise in the standard
deviations rather than in the means: thus, it is convenient to quantize
more heavily the values σx in order to obtain an equivalent ρ at a
lower RR rate.

Tables 3 and 4 report the rates spent for encoding the feature
vector for each couple (QP (μ), QP (σ)). Passing from the CIF se-
quence to the the SD video, the rates increase by a factor between 2.5
and 3, which is less than the ratio between the number of features for
the SD resolution and the number of features of the CIF sequence.
In addition, if we match Tables 3-4 with the previous ones (Tables
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QP(�) 
QP(�) 25 30 35 40 45 51 

20 47.24 39.26 33.12 29.2 27.67 27.23 
25 39.41 31.43 25.29 21.37 19.84 19.4 
30 33.13 25.15 19.01 15.09 13.56 13.12 
35 29.08 21.1 14.96 11.04 9.51 9.07 
40 26.85 18.87 12.73 8.81 7.28 6.84 
45 25.91 17.93 11.79 7.87 6.34 5.9 
51 25.31 17.33 11.19 7.27 5.74 5.3 

Table 3. Rates needed to encode the RR information for the Soccer
sequence.

QP(�) 
QP(�) 25 30 35 40 45 51 

20 132.79 115.81 101.04 89.64 81.72 78.49 
25 104.12 87.14 72.37 60.97 53.05 49.82 
30 82.15 65.17 50.4 39 31.08 27.85 
35 73.08 56.1 41.33 29.93 22.01 18.78 
40 69.66 52.68 37.91 26.51 18.59 15.36 
45 68.21 51.23 36.46 25.06 17.14 13.91 
51 67.59 50.61 35.84 24.44 16.52 13.29 

Table 4. Rates needed to encode the RR information for the Mobile
sequence.

1-2), we can notice that good correlation coefficients (ρ ≥ 0.85)
may be attained spending a rate that is less than 12 kbps for the CIF
sequence and no more than 27 kbps for the SD sequence.

4. CONCLUSIONS

In this paper we have proposed a reduced-reference approxima-
tion of the video structural similarity index, which leverages a
no-reference, fine-granularity distortion estimation computed at the
decoder to produce an accurate, objective estimation of the perceived
quality of a video sequence. We have focussed to channel-induced
degradations, but our system is intrinsically extensible to other kinds
of errors by further expanding the no-reference module at the de-
coder. A possible development of the system will be the exploration
of alternative coding paradigms for the feature vector, as distributed
source coding, to further reduce the bandwidth required for the RR
channel.
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