
RATE EFFICIENT REMOTE VIDEO FILE SYNCHRONIZATION

Hao Zhang, Chuohao Yeo, and Kannan Ramchandran

Department of EECS, University of California, Berkeley
Berkeley, CA 94720, USA

ABSTRACT

Video file synchronization between remote users is an impor-
tant task in many applications. Re-transmission of a video
that has been only slightly modified is expensive, wasteful and
avoidable. We propose a scheme that automatically detects
and sends only modified content according to some user de-
fined distortion constraint to enable rate savings under a wide
range of video edits. Through the use of a low-rate hierarchi-
cal hashing scheme, we can detect modifications with some
spatial granularity. We also apply distributed source coding
techniques to exploit correlation between remote copies for a
further rate rebate. Experimental results show that the pro-
posed approach achieves up to 7× rate reduction when com-
pared to re-transmitting.

Index Terms— VSYNC, rsync, video file synchroniza-
tion, video hash, video coding

1. INTRODUCTION

File synchronization is an important and common tool for
making incremental updates in applications like backing up
or mirroring to remote sites. Tools such as rsync [1] per-
form exact bit-stream synchronization of files and directories
between remote locations while minimizing data transfer by
essentially sending only the difference. When attempting to
synchronize video content, content-agnostic approaches such
as applying rsync to compressed video files fail because a mi-
nor modification could result in a completely different bit-
stream. Furthermore, they do not allow synchronization to
within a specified distortion.
Video file synchronization, which we define as maintain-

ing similar video content up to distortion across remote sites,
is also an important tool. Consider the following motivating
examples. A worker at a company headquarters prepares a
demo video and sends a compressed version to other com-
pany offices around the world. He then does some video edit-
ing and wants to update everybody’s copy of the video. Re-
transmitting the entire video file with only small changes is
expensive and unnecessary, especially in situations where the
video file is large and communication cost is high. Another
example is uploading (downloading) video content to (from) a
video file sharing site such as YouTube. When a user uploads
(downloads) a video similar to one that is already present, it

Fig. 1. A typical video file synchronization setup. Initially,
V2 is some compressed and/or down-sampled version of V1;
V1 is later modified to V

′
1 . We seek to synchronize to this

modification by updatingV2 to V
′
2 at pre-defined quality using

minimal data transfer between E1 and E2.

would be extremely helpful if only the modified content is
uploaded (downloaded), which avoids transferring the entire
video and hence substantially reduces Internet traffic. In an-
other scenario, it may be desirable to allow mobile devices
to always have access to the most recent version of a video
located on a remote server, but the local copy could have dif-
ferent resolution and/or bit-rate due to the device characteris-
tics and limitations. Minimizing transmission rate would be
important due to limited bandwidth and energy.
In this paper, we consider the following video file syn-

chronization problem shown in Figure 1. Initially, two users
E1 and E2 at remote locations have videos V1 and V2 respec-
tively, which are of the same content. Step (1) in Figure 1
indicates that V2 may not be exactly the same as V1, e.g. it
may be a compressed and/or spatially down-sampled version
of V1 that is encoded and transmitted to E2. Step (2) denotes
some video editing, where user E1 updates V1 to V

′
1 . Now,

user E2 wants to keep V2 synchronized to V
′
1 to get V

′
2 at

some pre-defined quality through step (3), ideally with mini-
mal data transfer. The same notations in Figure 1 will be used
throughout the paper unless stated otherwise.
We have previously proposed a video file synchronization

protocol, VSYNC, to address the above problem [2], i.e. step
(3) in Figure 1. In this work, we improve upon the hierarchi-
cal hashing scheme which converts the high-level content in-
formation to a low-level hash stream that is more amenable to
coding tools. Specifically, the hash structure is now designed
to spatially localize modifications. In addition, we investi-

1845978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

gate the application of distributed video coding (DVC) tech-
niques [3, 4] to exploit the correlation between frames from
V

′
1 and V2 to gain further rate savings. Experimental results
show that the proposed modifications improve performance
and outperform rsync and re-transmitting using H.264.

2. BACKGROUND

When an update request is initiated using rsync, it compares
a weak hash, and if necessary a strong hash, of chunks of two
files to find chunks in common between them, and send only
the chunks that are different as well as necessary assembly in-
structions [1]. The weak hash is to quickly rule out different
chunks, while the strong hash is applied to confirm matches.
A weak/strong hash division much inspired by rsync is used
in VSYNC, but the hashes operate in a content-aware and dis-
tortion tolerant manner due to the nature of video files.
There are various image and video hashing techniques

in the literature designed for tamper detection [5, 6, 7]. Of
particular interest is a scheme proposed by Lin et al. [7],
which encode hashes of the original image as syndromes of a
suitable low-density parity check (LDPC) code. On the other
hand, VSYNC is a systematic multimedia protocol that is de-
signed to efficiently synchronize video files rather than detect
image tampering. Furthermore, the thresholds and hash rates
in the image tampering literature are typically picked empir-
ically based on training data. In contrast, VSYNC [2] uses a
binary hashing scheme with a well-understood property that
relates hamming distance between hashes constructed from
binarized random projections to distortion between video
frames [8], thus allowing for a principled approach to making
such system choices.

3. SYSTEM DESIGN

3.1. System Overview

The design goal of VSYNC is to synchronize video files re-
motely with efficient bit-rate utilization. In this work, we de-
sign a hashing scheme such that matches are verified on a
per-macroblock (per-MB) basis (across multiple frames) in-
stead of on a per-frame basis [2], to provide additional spatial
granularity. Second, we apply DVC [3, 4] to efficiently up-
date frames that are well-correlated but do not satisfy the de-
sired criteria, and make a novel use of the hash check to esti-
mate correlation between remote copies of the frames. These
proposals help save substantial rate compared to rsync and
H.264.
We define a Group of Frames (GOF) as a chunk of M

frames. Each frame of sizeN1 xN2 is divided into q x q mac-
roblocks (MB). When an update request is initiated, VSYNC
checks by comparing a weak hash of each overlapping GOF
of V

′
1 and non-overlapping GOF of V2 to cheaply rule out

mis-matches. If necessary, V2 should first be resized to the
same spatial dimensions of V

′
1 before computing the hashes.

VSYNC then verifies the matches by checking a strong hash
of each MB across the corresponding GOFs, which helps to

detect localized edits and thus avoids re-transmission of un-
modified blocks. MBs that do not pass the hash check are en-
coded and transmitted using a suitable codec such as H.264.
Since video edits tend to occur in spatially and temporally
contiguous regions, such MBs can be efficiently encoded. For
MBs that pass the strong hash, the hamming distance between
the underlying hashes is used to determine if they are of a de-
sired quality. If not, the hamming distance is used to estimate
the correlation betweenMBs from V ′

1 and V2, which is in turn
used for rate allocation in updating the MBs with a DVC ap-
proach. This allows further rate reductions by exploiting the
presence of correlated frames even if they do not satisfy the
desired distortion. E1 then sends over necessary assembly
instructions for E2 to arrange the frames and blocks in the
correct order. Algorithm 1 summarizes the protocol.

Algorithm 1 VSYNC Protocol
1: Upon update request,E2 computes a weak hash for every
non-overlappingGOFs i = 1, . . . , m and the correspond-
ing LDPC parity bits of the strong hashes for the MBs
within each GOF, and sends them to E1.

2: E1 computes the weak hashes for every overlappingGOF
j = 1, 2, ..., n and does the following loop (steps 3-8).

3: for i = 1 tom, j = 1 to n do
4: Check if the weak hashes are within threshold Tw [2].

If not, continue; otherwise:
5: for b = 1 to B do
6: Apply BP decoding to the LDPC parity bits of the

strong hash for MB b. If successful, check the ham-
ming distance to determine and send to E2, if nec-
essary, the number of additional updating syndrome
bits of video encoding to ensure desired quality, us-
ing a DVC approach described in Section 3.3; if the
check fails, send the MB using H.264 or other suit-
able codecs.

7: end for
8: end for
9: E1 sends frames that are not of any GOF match in V

′
1 and

necessary assembly instructions to E2 to reconstruct V
′
2 .

3.2. Hierarchical Hashing for Edit Localization

The following hash generation process is adopted. We
first generate KB random matrices Pk,b ∈ R

q×q, k ∈
{1, . . . , K}, b ∈ {1, . . . , B} whose entries are i.i.d uni-
form random variables, where B is the total number of MBs
within each frame and K is the number of projections per
MB. For each MB b in frame l of GOF i denoted as vil,b,
K Frobenius inner products Tr(P T

k,bvil,b) are each quantized
into one bit depending on its sign. This is repeated for all
frames within GOF i, i.e. l = 1, . . . , M , where M is the
number of frames within GOF i, to get the binary string s i.
This spatial separation helps to localize edits, e.g. adding
a logo or removing a certain object at some fixed location
across the GOF. As will be shown in our results, this hashing

1846

scheme successfully avoids sending entire frames when only
minor modification is made on a small portion of the frames.
The projection bits of similar video blocks are expected

to have low hamming distance [8], and their relationship can
be modeled using a Binary Symmetric Channel (BSC). For
some distortion Q (in PSNR), the corresponding crossover
probability can be derived as p(Q) = 2

π sin−1 255
2σ10Q/20 [2],

where σ2 is the pixel intensity variance of the video. We de-
note Qd the desired video quality, and Qh < Qd the mini-
mum required video quality. We also define pd = p(Qd) and
ph = p(Qh).
Based on these projections, we design the weak hash to

check on a GOF basis to cheaply rule out GOFs that are far
away from each other, by choosing to send at random a frac-
tion r of the total projection bits from si. This selection saves
bit-rate while also allowing it to uniformly capture the pos-
sible editing done in the GOF. We can then use a threshold
Tw = rMKBph for the hamming distance check between
the weak hashes [8] and only corresponding GOFs that sat-
isfy video qualityQh will pass the weak hash check.
On the other hand, the strong hash is designed to confirm

if indeed each group of spatially co-located MBs across the
GOFs satisfy the video quality Qh, and if so, how much new
information needs to be sent for the update to satisfy the de-
sired quality Qd. In particular, the K projection bits for each
q × q MB b across the entire GOF are strung together to form
its hash bits si,b. To reduce the rate of the strong hash, we ap-
ply the parity check matrix of a LDPC code to the hash bits to
obtain and transmit only the parity bits [7, 9], using a coding
rate such that its threshold is about ph. User E1 would then
use a BP decoder [10] to decode the LDPC parity bits using
its corresponding projection bits as side-information; decod-
ing will be successful if the two hash sequences satisfy the
assumed correlation model. While the use of the LDPC par-
ity bits results in rate savings, BP decoding also requires more
computations, and thus we only apply the strong hash check
on GOFs that pass the weak hash.

3.3. Rate Efficient Update

The weak-strong hash check described in Section 3.2 helps
E1 to decide the necessary update information to be sent toE2

for synchronization. These updates include two possibilities.
First, frames from V ′

1 that are not part of any GOF match after
the weak hash check are grouped together and encoded using
a suitable codec at the desired quality Qd. Second, for each
MB within the GOFs that passed the weak hash, BP decoding
of the strong hash is performed.
Decoding failure indicates they do not satisfy the mini-

mum quality Qh, and the MBs across all frames within that
GOF are coded with a standard video codec; otherwise, a
DVC approach [4] is applied to update, if necessary, the MBs,
to ensure a quality of Qd. Denote a pair of corresponding
MBs in V

′
1 and V2 as X and Y respectively; user E1 would

like to transmitX to E2, which has Y as side-information. A

2-D DCT is applied on X , and the transform coefficients are
quantized and zig-zag scanned before syndrome encoding [4].
A total of 14 correlation classes are trained offline and the ap-
propriate correlation class for X and Y is determined by the
hamming distance between hashes. This inferred correlation
is then used to determine the syndrome rate for each DCT co-
efficient. E2 then decodes the received syndrome bits of the
coefficients using Y as side-information, unquantizes the co-
efficients, undoes the zig-zag scanning, and applies the 2-D
IDCT to reconstruct the block.

4. EXPERIMENTAL RESULTS
4.1. Setup
The test videos used in this work are the “News (QCIF)”
(176x144, 25fps, 12s), “News (CIF)” (352x288, 25fps, 12s),
“Foreman (QCIF)” (176x144, 25fps, 12s) and “Foreman”
(CIF) (352x288, 25fps, 12s). For each pair of videos (QCIF
and CIF), two video editing cases are considered:

• Case 1. V1 is the raw QCIF and is compressed with
H.264 using Group of Pictures (GOP) size 15 to obtain
V2. To form V

′
1 , swap the 2nd and the 3rd GOP and add

a logo of size 52 by 32 at the upper left corner across
the first 150 frames. The target synchronization quality
of V

′
2 is the same as that of V2. The choice of param-

eters is: GOF size M = 20, MB size q = 16, number
of projections per MB K = 64, and down-sampling
fraction r = 0.01.

• Case 2. V1 is the raw CIF, and is down-sampled to
QCIF and compressed with H.264 using GOP size 10
to obtain V2. To form V

′
1 , the last 20 frames of V1 are

deleted. The goal is to up-sample V2 to V1’s resolution
and update its content to V

′
1 . The choice of parameters

is: M = 10, q = 32,K = 128 and r = 0.01.
We compare the following methods: (1) rsync: compress

V
′
1 to V

′
2 using H.264 with GOP size 15 at the targeted PSNR

and run rsync to update V2 to V
′
2 ; (2) H.264: compress V

′
1

to V
′
2 using H.264 at the targeted PSNR and directly send it

over; (3) VSYNC (per-frame) [2]: run the algorithm between
V

′
1 and V2 to update V2 to V

′
2 ; and (4) VSYNC: run the pro-

posed scheme between V
′
1 and V2. It is worth noting that the

strong hash rate and threshold for VSYNC (per-frame) and
VSYNC are different. The latter allows a larger distortion
which increases the hash overhead but helps reduce the rate
to update the frames especially when the contents are highly
correlated.

4.2. Results

Figures 2 and 3 shows the rate-distortion (RD) curve for cases
1 and 2 respectively, where distortion is measured in PSNR
between videos V

′
1 and V

′
2 and rate (in kbps) is the rate of

information exchanged in both directions needed to update
the videos. In case 1, the results show that even when only a
small fraction of the frames are edited, rsync and H.264 end
up sending the entire updated video, which is unnecessary.

1847

0 50 100 150 200 250 30035
36
37
38
39
40
41
42
43
44
45
46

Transmission Rate (kbps)

PS
NR

 (d
B)

H.264
rsync (data + hash)
VSYNC (data + hash)
VSYNCper−frame (data + hash)

(a)

0 50 100 150 200 250 300 350 400 450 500 550 600

34
35
36
37
38
39
40
41
42
43
44

Transmission Rate (kbps)

PS
NR

 (d
B)

H.264
rsync (data + hash)
VSYNC (data + hash)
VSYNCper−frame (data + hash)

(b)

Fig. 2. RD curve under case 1. (a) “News” (b) “Foreman”.

VSYNC is able to detect the text banner and only transmit the
corresponding content. Note that VSYNC (per-frame) [2] has
a performance in between the VSYNC and the other two ap-
proaches. In fact, it transmitted the first half of the video that
has a text banner added to it, while keeping the second half
which were not edited at all. It is worth noting that PRISM
is not utilized in case 1, since the video quality at E2 has
already satisfied the constraints. In case 2, V2 after upsam-
pling is still correlated with V1, and only the missing details
should be transmitted. Rsync is again unable to exploit the
correlations between the videos, and thus is as expensive as
re-transmitting the entire video using H.264. VSYNC (per-
frame) [2] also fails to utilize the correlation, since V2 after
up-sampling will no longer satisfy the desired quality con-
straint. The proposed VSYNC offers rate savings even in this
case. We do point out one caveat: the rate savings also depend
on how users edit the video and can be made arbitrarily large
compared to other approaches, e.g. one can edit an infinitely
long video such that a logo is added to every frame, causing
rsync and VSYNC (per-frame) to retransmit the entire file.

5. CONCLUSIONS AND FUTUREWORK
We extend the video file synchronization system presented
in [2] by adding a new hierarchical hash structure to local-
ize various edit and applying a rate efficient DVC scheme
to update contents. Our experimental results show an im-
provement in rate savings under the considered test cases. Fu-
ture research directions include (1) taking into account tem-
poral correlation to build more rate efficient hashes; (2) de-
velop more rate-efficient DVC algorithms; and (3) optimize

400 450 500 550 600 650 700 750 800 850 900 95041

42

43

44

45

46

47

Transmission Rate (kbps)

PS
NR

 (d
B)

H.264
rsync (data + hash)
VSYNC (data + hash)
VSYNCper−frame (data + hash)

(a)

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 200039

40

41

42

43

44

Transmission Rate (kbps)

PS
NR

 (d
B)

H.264
rsync (data + hash)
VSYNC (data + hash)
VSYNCper−frame (data + hash)

(b)

Fig. 3. RD curve under case 2. (a) “News” (b) “Foreman”.

the trade off between rate for hash and that for the updates.

6. REFERENCES

[1] A. Tridgell and P. Mackerras, “The rsync algorithm,” http://
rsync.samba.org/, Nov 1998.

[2] H. Zhang, C. Yeo, and K. Ramchandran, “VSYNC — A Novel Video
File Synchronization Protocol,” to appear in Proc. ACM International
Conference on Multimedia (ACM MM), 2008.

[3] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed
video coding,” Proceedings of the IEEE, vol. 93, no. 1, pp. 71–83,
2005.

[4] R. Puri, A. Majumdar, and K. Ramchandran, “PRISM: A Video Coding
Paradigm With Motion Estimation at the Decoder,” IEEE Transactions
on Image Processing, vol. 16, no. 10, pp. 2436–2448, 2007.

[5] J. Fridrich and M. Goljan, “Robust hash functions for digital water-
marking,” International Conference on Information Technology: Cod-
ing and Computing, pp. 178–183, 2000.

[6] B. Coskun and B. Sankur, “Robust video hash extraction,” IEEE 12th
Proceedings on Signal Processing and Communications Applications
Conference, pp. 292–295, 2004.

[7] Y.C. Lin, D. Varodayan, and B. Girod, “Image Authentication and
Tampering Localization using Distributed Source Coding,” IEEE 9th
Workshop on Multimedia Signal Processing, pp. 393–396, 2007.

[8] C. Yeo, P. Ahammad, and K. Ramchandran, “Rate-efficient Visual Cor-
respondences using Random Projections,” to appear in IEEE Interna-
tional Conference on Image Processing, 2008.

[9] S.C. Draper, A. Khisti, E. Martinian, A. Vetro, and J.S. Yedidia, “Using
Distributed Source Coding to Secure Fingerprint Biometrics,” IEEE
International Conference on Acoustics, Speech and Signal Processing,
vol. 2, 2007.

[10] T.J. Richardson and R.L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 599–618, 2001.

1848

