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ABSTRACT

The analysis of complex human activity typically requires

multiple sensors: cameras that take videos from different

directions and in different areas, microphones, proximity

sensors, range finders, and more. Scenarios where it is not

possible to associate reliable clocks to each of the sensors

pose a synchronization problem between heterogeneous data

streams. In this paper, we propose a new theoretical frame-

work for measuring the synchrony between heterogenous

sensor streams. The main idea is to model the phase dis-

parity between two data streams explicitly as an Ornstein-

Uhlenbeck random process. Based on this model, we derive

a simple method for synchronizing of underlying sources.

We illustrate the ideas with experiments on audio-visual syn-

chronization and human motion categorization, and report

promising results.

Index Terms— synchronization, phase diffusion, Ornstein-

Uhlenbeck process

1. INTRODUCTION

It is often necessary to synchronize data streams recorded

from the same scene but with different sensors, such as audio

and video, or more. When no reliable clocks are associated

to the various streams, synchronization has to be based on the

sensor data itself. Even when time stamps are available, syn-

chronization methods based on the sensed data will still be

usefl. For example, in order to direct the camera to the per-

son who is speaking during a teleconference, it is necessary

to know who is talking at the moment and hence match that

part of the image to the audio signal. The quality of audio-

video synchronization in dubbed movies can be improved by

synchronizing speech in the target language with the facial

movements of the actor speaking in the source language.

The synchronization problem is much more general than

these examples suggest. For instance, object classification,

human motion categorization and image/video similarity

comparisons can be thought of as the problem of synchroniz-

ing the underlying sources, rhythms and representation. In

this paper, we develop a general theoretical framework for

measuring the degree of synchronization between heteroge-

nous sensor streams. We show that such a framework can

address useful applications such as audio-visual synchroniza-

tion and motion categorization.

Synchronization has been studied mainly for audio-video

[5, 9, 2], through approaches that model the two signals either

as different transformations of a hidden source signal, or as

transformations of one another. These approaches start from

measures of the similarity, correlation, or mutual information

between the amplitude values of the sensor signals. While

these methods can work well in practice, some ambiguity re-

mains in the amplitude domain, because of the heterogeneous

nature of the two streams.

Instead, we propose to model the two signals as sepa-

rate dynamic systems, loosely coupled by occasional coin-

cidences. To emphasize the temporal aspects of the two (or

more) signals to be synchronized, we build our model in the

phase domain through the Hilbert transform [3], a tool that is

commonly used in electrical communications[7].

We show that the phase disparity between heterogenous

signals is a process obeying the Langevin equation. This

idea is germane to some work in computer vision[6] that uses

Brownian motion to model stereo disparity. Through a first

order Taylor approximation, we explicitly model the phase

disparity as an Ornstein-Uhlenbeck process[4], and use it to

develop a discriminative measure for synchrony. We report

preliminary yet promising experiments on both audio-visual

synchronization and motion categorization.

2. MODELING PHASE DISPARITY

We model the two signals to be synchronized as the states of

a pair of weakly coupled dynamic systems[8]:

dx(1)

dt
= f (1)(x(1)) + εp(x(1),x(2)) (1)

dx(2)

dt
= f (2)(x(2)) + εp(x(1),x(2)) (2)

where f (i) governs the dynamics of each individual signal,

and εp is a weak coupling force representing the interaction
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Fig. 1. A stable limit cycle and the perturbed version

between the two systems. Without coupling terms, each state

vectors orbits around a closed, stable curve called the limit
cycle. The weak coupling term will generally perturb the

limit cycle away from its original trajectory (Figure 1). We

introduce the phase φ as a coordinate along the limit cycle,

such that it grows monotonically in the direction of the mo-

tion and gains 2π during each rotation. This phase signal dis-

regards the amplitude of x(i), and captures the durations of

the intervals between its zero crossings. Thus, in a sense,

the phase signal conveys pure temporal information about the

input. The limit cycle can be re-parameterized so that the

phase grows uniformly in time (a unit-speed curve) to obey

the equation: dφi(x(i))/dt = ωi in the absence of perturba-

tion. With weak coupling, we obtain the following equations:

dφ1(x(1))
dt

= ω1 + ε
∑

k

∂φ1(x(1))

∂x
(1)
k

p
(1)
k (x(1),x(2)) (3)

dφ2(x(2))
dt

= ω2 + ε
∑

k

∂φ2(x(2))

∂x
(2)
k

p
(2)
k (x(2),x(1)) (4)

We then define: Qi(φ1, φ2) =
∑

k
∂φi(x

(i))

∂x
(i)
k

p
(i)
k (x(i),x(3−i))

and further simplify the equation as:
dφi(x

(i))
dt = ωi +

Qi(φ1, φ2). Since Qi is periodic in φ1 and φ2, we expand it

using double Fourier series: Qi(φ1, φ2) =
∑

k,l a
k,l
i eikφ1+ilφ2 .

In the coupling, only low frequency components contribute

steadily to the deviation of limit cycles, that is, only those

terms which satisfy the resonance condition: kφ1 + lφ2 ≈ 0
will be preserved. Assume that the two natural frequencies ω1

and ω2 are nearly in resonance: ω1
ω2

≈
φ1
φ2

≈
m
n , then all the

terms in the Fourier series with k = nj, l = −mj are resonant

and contribute to the equations. Therefore, we have: dφi

dt =
ωi +ε

∑
j a

j(n−m)
1 eij(nφi−mφ3−i) � ωi +εqi(nφi−mφ3−i)

for i = 1, 2. Let the phase disparity Ψ � nφ1 − mφ2,

Ω � mω2 − nω1, q(Ψ) � nq1(Ψ)−mq2(−Ψ). Then,

dΨ
dt

= −Ω + εq(Ψ) (5)

In the presence of noise, we can further write (5) as:

dΨ
dt

= −Ω + εq(Ψ) + σξ(t) (6)

where ξ(t) is typically Gaussian. Equation (6) is called the

Langevin equation.

3. ORNSTEIN-UHLENBECK PROCESS

The Langevin equation turns out to be a natural model for

the phase disparity. However, the q function in (6) does not

have a specific form, thus making the solution intractable in

general cases. To seek an explicit solution, we need to specify

q manually. Take the Taylor expansion of q as:

q(Ψ) =
∞∑

n=0

q(n)(0)
n!

Ψn = q(0) + q′(0)Ψ + O(Ψ2)... (7)

If we only take a zero order approximation, that is, we re-

place q(Ψ) with q(0) in (6), it can be shown that Ψ follows a

drifted Brownian motion: Ψ(t) = [q(0)− Ω]t + σ
∫ t

0
ξ(t)dt.

Although it is possible to substitute q(Ψ) with an arbitrary

higher-order approximation using Taylor series representa-

tion, it becomes harder to find an explicit solution for this

stochastic differential equation. Instead, we only take the

first-order Taylor approximation, that is, we substitute q(Ψ)
with q(0) + q′(0)Ψ and derive the equation:

dΨ(t) = −λ [Ψ(t)− μ] dt + σξ(t)dt (8)

where λ = −εq′(0) and μ = Ω−εq(0)
εq′(0) .Equation (8) defines

a stochastic process called Ornstein-Uhlenbeck process, and

admits an explicit solution:

Ψ(t) = Ψ(0)e−λt + μ(1− e−λt) + σe−λt

∫ t

0

eλsξ(s)ds

(9)

4. MEASURE FOR SYNCHRONY

Consider the physical intuitions behind the parameters of

Ornstein-Uhlenbeck process. The term |λ| is proportional to

ε, which measures the strength of the coupling. The bigger

ε, the stronger the coupling, and the more likely synchroniza-

tion is to occur. Also, |μ| ≈
∣∣∣ Ω
εq′(0)

∣∣∣ ∝ |Ω| = |mω2 − nω1|.
The smaller |Ω| is, the more likely resonance will be, so that

a small |Ω| is a condition for synchrony. Also notice that

σ measures the strength of noise. The bigger σ, the more

unreliable the synchrony measure will be, so σ can be used

to deemphasize poor segments of the signal. We combine all

these three considerations into the following, single measure
of synchrony:

κ =
∣∣∣∣ λ

σμ

∣∣∣∣ (10)
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5. PARAMETER ESTIMATION

It can be proven that the Ornstein-Uhlenbeck process is

Markovian and Gaussian with parameters E[Ψt] = Ψ0e
−λt +

μ(1−e−λt) −−−→
t→∞ μ and Var[Ψt] = σ2

2λ (1−e−2λt) −−−→
t→∞

σ2

2λ .

In order to estimate the parameters λ, μ, σ, consider a set of

n+1 samples from Ψ(t): Ψ0, Ψ1, ...,Ψn where the sampling

interval is ε. We can write the conditional probability as

a Gaussian distribution: p(Ψi+1|Ψi) = N (Ψi+1|μ̂i, σ̂)
where μ̂i = Ψie

−λε + μ(1 − e−λε) and the variance

σ̂ = σ
√

(1−e−2λε)
2λ . By the Markov property the joint proba-

bility distribution can be written as:

p(Ψ0, Ψ1, ...,Ψn) = p(Ψ0)
n∏

i=1

p(Ψi|Ψi−1) (11)

∝
n∏

i=1

1√
2πσ̂

exp−
(ψi−μ̂i−1)2

2σ̂2 (12)

By taking the logarithm of the right side of (12) and setting the

derivatives w.r.t λ, μ and σ separately to zero, we derive the

closed-form expression for κ defined in equation (10). Details

are omitted for brevity.

6. EXPERIMENTAL RESULTS

Our audio-visual synchronization experiments show that our

theoretical analysis can capture the synchrony between het-

erogenous sensor streams, i.e., audio and video signals. To

show generality, we also apply our analysis to the human

motion categorization task of distinguishing between running

and walking gaits in an unsupervised way. Although both se-

quences are recorded by video cameras, the appearance and

moving directions of a person are very different, making such

a job non-trivial.

6.1. Audio Visual Synchronization

The video is extracted from an online CNN news broadcast

where one single person is talking in front of the camera. The

sequence consists of 584 frames of size 320 × 240, collected

at 30fps. The corresponding audio signal contains 623556

samples, at a sampling frequency of 32 kHz. To process the

visual part, we first use the Lucas-Kanade-Tomasi [10] tracker

to extract the regions containing the moving lips. After that,

each snapshot of the mouth is decomposed into a set of Haar

wavelet coefficients. We measure the strength of the move-

ment of the mouth by summing the square of all horizontal

wavelet coefficients.

To process the audio signal, we first take the envelope by

using a full-wave rectifier and a low pass filter. Both video

and audio signals are further smoothed by using a Bessel IIR

band pass filter with a common narrow-band window. It is

important to use the same band pass filter for both signals so

Fig. 2. A system for measuring the audio-visual synchrony

Fig. 3. Video and audio samples with pre-processing

that the resonance condition is automatically imposed. This

is because Δφ = ΔωΔt and small Δω leads to small phase

disparity, which can be closely approximated by the Ornstein-

Uhlenbeck process. Fig.2 describes our system for measuring

the synchrony between video and audio signals. The top row

of Fig.3 displays several snapshots of the video and the ex-

tracted region of mouth by using the Lucas-Kanade tracker

while the bottom row shows a plot of the audio signal along

with the steps for pre-processing (envelope + smoothing).

In order to measure the synchrony between audio and

video parts, we extract the central 400 frames from the video

and shift this sequence in time from −50 frames to +50
frames. For each shift, we calculate the phase using Hilbert

transform for both segments of signals and re-estimate the

parameters for κ. Fig.4 shows the result using our synchrony

measure where the peak is almost in its central location.

Although there is a noticeable deviation of +3 frames shift

against the ground-truth, the deviation is considerably small

relative to the duration of the video.
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Fig. 4. Measure for audio-visual synchrony using κ

6.2. Human Motion Categorization

We also apply our synchrony measure to distinguish between

walking and running gaits using the video from [1]. Fig.5

shows four snapshots of the videos we used in the experiment.

To measure motion, we sum up the absolute values of the tem-

poral gradients for each frame in both videos. The left image

of Fig.6 plots the measure for two walking sequences, where

an obvious periodic motion is being detected. The right image

shows the phase disparity between two videos: Each curve

corresponds to the phase disparity between two video streams

shifted by the frame index. We take the lower envelope of the

all the measures and calculate κ for synchrony. In the experi-

ment, we find that κ is much higher when either two walking

sequences or two running sequences are compared with each

other, and drops dramatically when videos from different cat-

egories (walking vs. running) are compared. This indicates

the effectiveness of our synchrony measure.

7. CONCLUSIONS

In this paper, we develop a new theoretical framework for

measuring the synchrony between heterogenous data streams,

which we model as two interacting dynamic systems. We use

the Ornstein-Uhlenbeck process, i.e., the first-order Taylor

approximation to the Langevin equation, to model the phase

disparity. Based on that, we develop a simple synchrony mea-

sure, namely, κ =
∣∣∣ λ
σμ

∣∣∣. We report promising experiment

Fig. 5. Snapshots of video sequences

Fig. 6. Measure for videos and phase disparity

results on both audio-visual synchronization and human mo-

tion categorization using our theoretical analysis. We believe

that the concept of synchronization and the theoretical model

based on Ornstein-Uhlenbeck process can be further general-

ized and adapted to many applications in future work.
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