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ABSTRACT

Generalized singular value decomposition (GSVD) has
been used for linear discriminant analysis (LDA) to solve the
small sample size problem in pattern recognition. However,
this algorithm may suffer from the over-fitting problem. In
this paper, we propose a novel orthogonalization technique
for the LDA/GSVD algorithm to address the over-fitting prob-
lem. In this technique, an orthogonalization of the basis of
the discriminant subspace derived from the LDA/GSVD al-
gorithm is carried out through an eigen-decomposition of a
small size inner product matrix. It is computationally efficient
when data are high dimensional. The technique is further
applied to the kernelized LDA/GSVD algorithm, mGSVD-
KDA, leading to a new algorithm, referred to as GSVD-OKDA.
It is shown that with linear and nonlinear kernels, this new al-
gorithm successfully overcomes the over-fitting problem of
the LDA/GSVD and mGSVD-KDA algorithms. Simulation
results show that the proposed algorithms provide high recog-
nition accuracy with low computational complexity.

Index Terms— pattern recognition, pattern classification,
feature extraction, face recognition

1. INTRODUCTION

The classical linear discriminant analysis (LDA) has been
widely used in many pattern recognition applications [1]-[7].
The LDA is concerned with finding a discriminant subspace
in which the between-class scatter of the projected samples is
maximized and simultaneously the within-class is minimized.
This objective is achieved by finding the non-zero eigenvec-
tors of SbS

−1
w , where Sb and Sw are respectively the between-

class and within-class scatter matrices [1]. However, these al-
gorithms have conspicuous limitations in that they face the so
called small sample size (SSS) problem when the number of
the samples is small relative to the dimension of the samples,
and they fail to capture the boundaries between the nonlinear
classes. In this case, Sw is not inversible. In the past, a good
number of discriminant analysis methods have been proposed
to address these problems. Recently, a generalized singular
value decomposition has been used in LDA (LDA/GSVD)
[2] to solve the SSS problem; however, this algorithm suf-

fers from excessive computational load with possible mem-
ory overflow when the samples have a large dimension. Sub-
sequently, the GSVD algorithm has been modified and inte-
grated with a kernel method leading to a kernelized discrimi-
nant algorithm [3], the mGSVD-KDA algorithm, which effec-
tively overcomes the computational complexity problem and
also has the ability to classify nonlinearly distributed patterns.
However, these GSVD-based algorithms suffer from the over-
fitting problem, in which the derived discriminant subspace
incorporates random features that are unrelated to discrimi-
nation and the impact of these random features gets ampli-
fied in the recognition process. Ye et al. [4] have proposed
a method to overcome the over-fitting problem by orthogo-
nalizing the basis of the discrimination subspace through a
QR decomposition. However, the QR decomposition has a
high computational complexity. Further, the technique suf-
fers from memory overflow problem when the patterns, such
as human faces, have a very high dimension. Also, the QR
decomposition cannot be applied to the kernel methods.
In this paper, a new orthogonalization technique is pro-

posed for the LDA/GSVD algorithm to address the over-fitting
problem. The proposed technique is based on the orthogo-
nalization of the basis of the discriminant subspace through
an eigen-decomposition of a small size inner product ma-
trix. Since the LDA/GSVD algorithm may run into a mem-
ory overflow problem, the proposed scheme of orthogonal-
ization is applied to its kernelized version, namely mGSVD-
KDA algorithm. The resulting algorithm can effectively deal
the over-fitting problem and at the same time it is computa-
tionally efficient for high-dimensional data. Extensive com-
puter simulations are carried out using typical pattern recog-
nition benchmark databases with linear or nonlinear kernels
to demonstrate the computational efficiency and the recogni-
tion accuracy of the proposed scheme.

2. REVIEW OF LDA/GSVD AND ITS
KERNELIZATION

2.1. LDA Based on GSVD

Let a set of n m-dimensional samples xl (l = 1, · · · , n)
consist of N classes with the ith class having ni samples.
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Therefore, n =
∑N

i=1 ni. Let c(i) represent the centroid of
the samples of the ith class and c the global centroid of all
the n samples in this set. Further, let C =

(HT
b

HT
w

)
, where

Hb =
[√

n1(c(1) − c), · · · ,
√

nN (c(N) − c)
]
, and Hw =[

(x1−c(1)), · · · , (xn1−c(1)), (xn1+1−c(2)), · · · , (xn1+n2−
c(2)), · · · , (xn−nN+1 − c(N)), · · · , (xn − c(N))

]
. Then, the

SVD ofC can be obtained asC = P

(
R 0
0 0

)
QT = P1RQT

1 ,

where R is the singular value matrix of size k × k, k =
rank(C), P and Q are the singular vector matrices, and P1

and Q1 consist of the left most k columns of P and Q, re-
spectively, and hence correspond to the range space of C. P1

can be further partitioned as
(
P11
P12

)
, where P11 and P12, re-

spectively, take the first N and the last n rows of P1. Using
the SVD of P11, we have UT P11W = Σb, where U and W
are singular vector matrices and Σb is the singular value ma-
trix. Partitioning W as (Wr,W2), where the columns of Wr

correspond to the range space of P11, we have an optimal
transformation matrix G given by

G = Q1R
−1Wr. (1)

2.2. Kernelization of LDA/GSVD

A limitation of the above LDA/GSVD algorithm is the exces-
sive computation involved with the SVD of C when the data
are high dimensional. A kernelized extension of this algo-
rithm, which is based on the modified GSVD and referred to
as mGSVD-KDA algorithm [3], can effectively overcome the
computational complexity problem associated with high di-
mensional patterns and can capture the nonlinear pattern dis-
tribution. A kernel is a nonlinear map, Φ : χ → F , xl → φl,
designed to map the samples x’s of the input space χ into a
higher f -dimensional feature space F , in which the classes
become linearly separable and a linear discriminant analysis
techniques can be applied.
As in the LDA/GSVD algorithm, defineΦb = [

√
n1(φ(1)−

φ), · · · ,
√

nN (φ(N) − φ)], Φw =
[
(φ1 − c(1)), · · · , (φn1 −

c(1)), (φn1+1−c(2)), · · · , (φn1+n2 −c(2)), · · · , (φn−nN+1−
c(N)), · · · , (φn − c(N))

]
, and Γ =

(ΦT
b

ΦT
w

)
, where φ(i) is the

centroid of the ith embedding class, and φ the global cen-
troid of the mapped samples in the feature space. The SVD

of Γ is then given by Γ = P̃

(
R̃ 0
0 0

)
Q̃T , where P̃ and Q̃

are orthogonal matrices, and R̃ is a diagonal matrix with its
elements being the non-zero singular values of Γ sorted in
non-increasing order. We form a symmetric matrix ΓΓT =(

ΦT
b Φb ΦT

b Φw

ΦT
wΦb ΦT

wΦw

)
, and a kernel matrix is constructed asK =

(klh)l,h=1,··· ,n, whose elements are inner products in the ker-
nel feature space determined through a kernel function such
that klh = k(xl, xh) = 〈φl, φh〉. Then, the sub-matrices of
ΓΓT can be expressed in terms of K as ΦT

b Φb = D(B −

L)T K(B − L)D,ΦT
wΦw = (I − A)K(I − A), ΦT

b Φw =
D(B−L)T K(I −A), where A = diag(A1, · · · , AN ), Ai =
(1/ni)ni×ni

, B = diag(B1, · · · , BN ), Bi = (1/ni)ni×1, D =
diag(D1, · · · , DN ), Di = (

√
ni)ni×ni

, for i = 1, · · · , N, L =
(1/n)n×N , and I is an n × n identity matrix.
The eigen-decomposition of ΓΓT generates the eigenvec-

tor matrix P̃ and the non-zero eigenvalue matrix R̃. The
leftmost z columns of P̃ , where z = rank(ΓΓT ), form the
matrix P̃1, and the first N rows of P̃1 form the matrix P̃11.
Through SVD, P̃11 can be decomposed as P̃11 = Ũ Σ̃bW̃ ,
where Ũ and W̃ are the singular vector matrices, and Σ̃b is
the singular value matrix.
Suppose Q̃ is partitioned as Q̃ = (Q̃1, Q̃2), where Q̃1 and

Q̃2 correspond to the range space and the null space of ΓΓT ,
respectively. As Γ = P̃1R̃Q̃T

1 , we have Q̃1 = ΓT P̃1R̃
−1. Let

matrix W̃v consist of the left most v columns of W̃ , where
v = rank(ΦT

b Φb). We then have the optimal transformation
matrix G̃ given by

G̃ = Q1R̃
−1W̃v = ΓT P̃1R̃

−2W̃v = ΓT Λ (2)

where Λ = P̃1R̃
−2W̃v .

3. ORTHOGONALIZATION OF THE GSVD-BASED
ALGORITHMS

The GSVD-based algorithms are susceptible to the over-fitting
problem. The discriminant subspace thus derived contains
random features that are unrelated to discrimination. As all
the eigenvectors computed in the first stage of GSVD are
maintained and the eigenvectors are divided by their associ-
ated eigenvalues, the influence of the random features on the
small eigenvectors gets amplified when they are divided by
their associated small eigenvalues.
Normally, there are three methods addressing the over-

fitting problem. The first one is the regularization [5] in which
a small positive perturbation is introduced to a matrix in or-
der to bring small changes to large eigenvalues relative to the
changes to the small eigenvalues. Thus, the effect of over-
fitting is reduced when the eigenvectors are divided by the
eigenvalues resulting from the perturbed matrix. The optimal
regulation parameter is estimated adaptively from the training
samples through cross-validation, which is very time consum-
ing. In the second method, the smaller eigenvalues and the
corresponding eigenvectors are dropped [6]. Nevertheless,
there is no universal criterion to determine as to how many
eigenvalues can be considered small enough to be dropped.
The third approach to fixing the over-fitting problem is to or-
thogonalize the basis of the discriminant subspace. Ye et al.
[4] orthogonalize the basis through a QR decomposition of
the feature vectors of the discriminant subspace. However,
QR decomposition is inefficient for high dimensional data and
not conductible in the kernel feature space where the dimen-
sion is infinite.

1834



3.1. Orthogonalization of LDA/GSVD

We now propose a novel orthogonalization method to over-
come the over-fitting problem of the the LDA/GSVD algo-
rithm. The main idea of this method is to orthogonalize the
basis of the discriminant subspace by means of eigen decom-
position of an inner product matrix. Through orthogonaliza-
tion, the basis vectors are re-scaled so that the larger eigen-
vectors are assigned more discrimination capacity. Thus, the
over-fitting problem is overcome. This method is efficient for
high dimensional data and compatible with the kernel method.
We carry out eigen-decomposition of GT G as

GT G = WT
r R−2Wr = ϑπϑT , (3)

whereWr consists of the left r columns ofW , ϑ is an orthog-
onal matrix and π is a diagonal matrix. Then,

Go = Gϑπ−1/2 (4)

is the transformation matrix with its columns mutually or-
thogonal. Since the size of the matrix WT

r R−2Wr is small,
this orthogonalization step is computationally efficient.

3.2. Orthogonalization of the Kernelized Algorithm

This orthogonalization technique also applies to the kernel-
based algorithm leading to the GSVD-OKDA algorithm. Al-
though G̃ is implicit, the inner product G̃T G̃ can be explicitly
calculated and its eigen-decomposition can be found as

G̃T G̃ = W̃T
v R̃−2W̃v = ϑ̃π̃ϑ̃T , (5)

where ϑ̃ and π̃ are the eigenvector matrix and eigenvalue ma-
trix, respectively. Then, an orthogonalized G̃, G̃o, is obtained
such that

G̃o = G̃ϑ̃π̃−1/2. (6)

As in the linear algorithm, the eigen-decomposition in this
step is very efficient.
Given a test image xt with its mapping in the feature space

being φt, the kernel function is applied again to obtain ql =
k(xl, xt) = 〈φl, φt〉, and subsequently form the vectors,
Qb =

[√
n1(q(1) − q), · · · ,

√
nN (q(N) − q)

]
Qw =

[
(q1 − c(1)), · · · , (qn1 − c(1)), (qn1+1 − c(2)), · · · ,

(qn1+n2 − c(2)), · · · , (qn−nN+1 − c(N)), · · · , (qn − c(N))
]
,

(7)
where q(i) = 1

ni

∑(n1+···+ni)
l=(n1+···+ni−1+1) ql and q = 1

n

∑n
l=1 ql.

Since Γφt =
(QT

b

QT
w

)
, the projection of φt on the feature vectors

can be found as w = G̃T
o φt = π̃−1/2ϑ̃T Λ

(QT
b

QT
w

)
.

4. EXPERIMENTS

In this section, experiments are conducted as an empirical
evaluation of performance of the proposed orthogonalized lin-

Table 1. Summary of Databases
Dimen- No. of No. of No. of

Database sion classes training test
(m) (N) samples(n) samples

FERET 21504 28 168 112
AR 17640 15 75 120

SSS ORL 10304 40 160 120
Dataset1 7454 7 49 161
Dataset2 2887 4 160 160

LSS Isolet 617 26 728 1040
MUSK 166 2 480 400

ear and kernel algorithms. In linear discrimination, the pro-
posed GSVD-OKDAwith linear kernel is compared with mGSVD-
KDA with linear kernel, its orthogonalized version based on
QR decomposition (QR-mGSVD-KDA), and PCA+LDA [1].
Five SSS databases, FERET, AR, ORL, Dataset1 and Dataset2,
are used in this set of experiments. The kernelized versions of
these algorithms, GSVD-OKDA, mGSVD-KDA, and KPCA+LDA
[7], are evaluated with two large sample size (LSS) databases,
Isolet andMUSK. The images of human face databases, FERET,
AR and ORL, are preprocessed to move the faces to the cen-
ters of the images and are also cropped to reduce the size.
Table 1 gives the summary of the databases used in our ex-
periments. The nearest-neighbor classifier is used throughout
the experiments. The two kernel functions used in our exper-
iments are the Gaussian radial basis function (RBF) kernel,
k(xl, xh) = exp

(
− ||xl−xh||2

σ

)
, where || · || denotes the

Euclidean 2-norm and σ > 0, and the nonhomogeneous poly-
nomial kernel, k(xl, xh) =

(〈xl, xh〉+1
)d

, where d is a pos-
itive integer. The kernel parameters are determined through
cross-validation.
The simulation results of the linear algorithms on the SSS

databases are shown in Table 2. Since the LDA/GSVD algo-
rithm runs into memory overflow when the three face data-
bases are used, we instead use mGSVD-KDA algorithm with
linear kernel for comparison. For the three high-dimensional
face databases, memory overflow occurs when the QR-mGSVD-
KDA with linear kernel being used. For the two text data-
bases, the execution time of the QR-mGSVD-KDA with lin-
ear kernel significantly higher than that of the proposed GSVD-
OKDA algorithm with linear kernel. It can be seen that, using
linear kernel, the proposed GSVD-OKDA algorithm provides
higher recognition accuracy compared to that of the mGSVD-
KDA algorithm with a negligible overhead of the computa-
tional time.
The simulation results of the kernelized algorithms on the

two LSS databases are shown in Table 3. It can be seen that
from this table all the kernelized algorithms substantially out-
perform the LDA algorithm in terms of recognition accuracy.
It is also seen that the proposed GSVD-OKDA algorithm pro-
vides a recognition accuracy that is higher than that provided
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Table 2. Recognition rate (%) and execution time (seconds) of linear algorithms with small sample size databases
Database FERET AR ORL Dataset1 Dataset2
Linear Algorithm Recog. Exe. Recog. Exe. Recog. Exe. Recog. Exe. Recog. Exe.

Rate Time Rate Time Rate Time Rate Time Rate Time
GSVD-OKDA† 99.3 0.84 96.8 0.47 95.9 0.84 92.5 0.18 84.4 0.29
QR-mGSVD-KDA† Memory overflow Memory overflow Memory overflow 92.5 7.2 84.1 12.23
mGSVD-KDA† 95.7 0.84 95.8 0.46 91.6 0.83 92.7 0.17 83.6 0.28
LDA/GSVD Memory overflow Memory overflow Memory overflow 92.7 20.06 83.4 9.78
PCA+LDA 97.8 0.79 90.7 0.45 90.8 0.70 85.3 0.19 81.2 0.33
†With linear kernel.

by the mGSVD-KDA algorithm with a little increase in the
computation time.
Overall, we observe that the proposed GSVD-OKDA al-

gorithm with linear or nonlinear kernel significantly outper-
forms its original linear or nonlinear algorithm. The orthog-
onalized algorithms are also competitive to the other algo-
rithms in terms of recognition accuracy and the computational
efficiency. The experiments suggest that the over-fitting prob-
lem encountered in the GSVD-based algorithms has been over-
come significantly by the proposed algorithms with a little
extra computational time.

Table 3. Recognition rates (%) and execution time (seconds)
with large sample size databases

Database Isolet MUSK
Recog. Exe. Recog. Exe.

Algorithm Rate Time Rate Time
lnr. LDA 86.5 79.1 87.3 30.7

GSVD-OKDA 94.7 93.4 96.9 43.2
Poly. mGSVD-KDA 93.1 92.5 95.4 42.4

KPCA+LDA 91.1 95.1 91.9 40.6
GSVD-OKDA 95.0 99.6 97.5 39.5

RBF mGSVD-KDA 94.1 98.9 96.3 38.6
KPCA+LDA 92.3 130.2 93.0 50.5

5. CONCLUSION AND DISCUSSION

In this paper, we have proposed an orthogonalization tech-
nique to address the over-fitting problem of the LDA/GSVD
algorithm. The main idea of this technique is to orthogo-
nalize the basis of the discriminant subspace derived from
the LDA/GSVD algorithm through eigen-decomposition of a
small size inner product matrix. This technique is time ef-
ficient for high dimensional data. Using this technique, we
have further proposed a kernelized algorithm, GSVD-OKDA,
to overcome the over-fitting problem of the kernelized LDA/
GSVD algorithm, mGSVD-KDA. The new algorithm with
linear kernel has been demonstrated to deal effectively with
the over-fitting problem and has recognition accuracy higher
than that of the mGSVD-KDA algorithm with linear kernel. It

has also been shown that this algorithm with nonlinear kernel
provides a recognition accuracy higher than that provided by
the mGSVD-KDA algorithm.
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