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ABSTRACT

Due to the curse of dimensionality, high-dimensional data is

often pre-processed with some form of dimensionality reduc-

tion for the classification task. Many common methods of

supervised dimensionality reduction have focused on separat-

ing and collapsing the data near the class centroids. These

methods often make assumptions on the distributions of the

data classes – namely Gaussianity – which can lead to ad-hoc

and sub-optimal implementation. In this paper we present a

method of supervised dimensionality reduction which takes

an information-geometric approach by maximizing the be-

tween class information distances. This is shown to have di-

rect relation to the Chernoff and Bhattacharya performance

bounds for classification error. We illustrate our methods on

real data and compare to several existing methods.

Index Terms— Information geometry, statistical mani-

fold, dimensionality reduction, classification

1. INTRODUCTION

As the efficiency of data retrieval increases, and the costs

of storage decreases, many applications have been developed

which generate massive amounts of data. This raises the is-

sue of analysis, as high-dimensional data sets suffer from the

curse of dimensionality. There has been much work presented

in which high dimensional data is projected into a low dimen-

sional space to aid in various learning tasks such as classifi-

cation. While several supervised algorithms [1, 2] have been

presented which operate in the non-linear framework, many

of the commonly presented methods of supervised dimen-

sionality reduction focus on linear projections, which do not

require a re-processing of the low-dimensional space when

new data becomes available. An extensively utilized method

of linear supervised dimension reduction, Fisher’s linear dis-

criminant analysis (LDA) [3], has been the inspiration for

many derivatives. These methods have been created specif-

ically for the classification task, and offer projections which
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are ideal for separating Gaussian data classes. When classes

do not follow a normal distribution, these methods often suf-

fer performance losses, although they have proven to be ro-

bust for many applications.

In this paper we use an information-geometric form of di-

mensionality reduction deemed information preserving com-
ponent analysis (IPCA) towards the problem of pre-processing

for the classification task. We have recently utilized IPCA in

an unsupervised manner [4] for the tasks of visualization and

feature extraction on multiple related high dimensional, large

sample size data sets (e.g. samples of patient blood cells).

We characterized each data set as some generative model and

found the linear projection which preserved the high dimen-

sional Fisher information distances (between all pairs of data

sets) in the low dimensional space.

We now adapt IPCA to work in the supervised realm,

in which each class is characterized by a probability density

function (PDF), and we find the low-dimensional space which

maximizes the information distances between class PDFs. Un-

like traditional LDA methods, IPCA makes no assumption on

the class distributions, only that each PDF lies on some statis-
tical manifold for which the Fisher information distance is an

appropriate metric. Previous methods [5] have used informa-

tion theory for dimensionality reduction, but focus mainly on

measuring the entropy or mutual information of the samples

to their class labels. IPCA uses the information geometry of

the statistical manifold to find the optimal low-dimensional

subspace which maximizes the information distance between

classes. This is directly related to the Bhattacharya and Cher-

noff performance bounds, resulting in superior classification.

This paper proceeds as follows: In Section 2, we formu-

late the problem we will attempt to solve. We present our

methods for finding the IPCA projection in Section 3. Sim-

ulation results for real data are shown in Section 4, followed

by a discussion and areas for future work in Section 5.

2. PROBLEM FORMULATION

The Chernoff performance bound [6] is related to the Cher-

noff distance between two probability density functions (PDFs)
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f(x) and g(x),

DCH(f, g) = − log
∫

f(x)αg(x)1−α dx,

where 0 ≤ α ≤ 1. Let f(x) and g(x) be the PDFs of two

distinct data classes Xf and Xg respectively. As DCH(f, g)
increases, the upper bound on the probability of classification

error between points in Xf and Xg decreases. A special case

of the Chernoff distance is when α = 1
2 , and is known as the

Bhattacharya distance,

DB(f, g) = − log
∫ √

f(x)g(x) dx,

which has been used to bound the classification error for di-

mensionality reduction [7]. Hence, an ideal form of dimen-

sionality reduction would ensure that the Bhattacharya dis-

tance between all classes is maximized, which would allow

for control of error probability.

Specifically, given a data set X = [X1, . . . ,XN ], where

Xi consists of data points x ∈ R
d belonging to class i we can

define a similarity between data classes Xi and Xj with the

Bhattacharya as DB(pi(x), pj(x)), where pi and pj are the

estimated PDFs of classes i and j respectively. Can we find a

mapping

A : X → Y

in which the elements y ∈ Y exist in R
m, m < d which

maximizes DB(pi(y), pj(y)), ∀ i, j? As to minimally alter

the natural geometry of the data, we focus solely on linear

and orthonormal projection matrices (i.e. rotations).

3. METHODS

It should be noted that the Bhattacharya distance is a mono-

tonic transformation of the Hellinger distance,

DH(f, g) =

√∫ (√
f −√

g
)2

dx,

such that

DB(f, g) = − log
(

1 − 1
2
D2

H(f, g)
)

.

This transformation is important as it allows us to modify our

original desire of maximizing the Bhattacharya distance be-

tween class PDFs to that of maximizing the Hellinger distance

between classes. The Hellinger distance has been shown to

converge to the Fisher information distance, which is the nat-

ural metric on a statistical manifold (i.e. a manifold of PDFs)

[8]. While some may argue to simply maximize the Bhat-

tacharya distance between class PDFs, as was parametrically

done in [9], by framing the problem in the manner in which

we have, we now offer an information geometric approach

with no increase in complexity.

This information geometric approach fits into a frame-

work which we have recently presented deemed information
preserving component analysis (IPCA) [4], which is an unsu-

pervised method of dimensionality reduction which preserves

the high-dimensional information distances between data sets

in a low-dimensional space. Specifically, in [4] we found the

projection matrix A which optimized a cost function similar

to

A = arg min
A:AAT =I

‖D(X ) − D(X ;A)‖2
F , (1)

where ‖ · ‖F is the standard Frobenius norm, I is the iden-

tity matrix, D(X ) is a distance matrix such that Dij(X ) =
DH(Xi, Xj), and D(X ; A) is a similar matrix where the el-

ements are perturbed by the projection matrix A, D(X ; A) =
DH(AXi, AXj). With an abuse of notation, we refer to

DH(pi, pj) as DH(Xi,Xj), with the knowledge that the dis-

tance is calculated with respect to PDFs, not realizations.

Consider the following theorem:

Theorem 1 Let RVs X, X ′ ∈ R
d have PDFs fX and fX′ ,

respectively. Using the m×d matrix A satisfying AAT = Im,
construct RVs Y, Y ′ ∈ R

m such that Y = AX and Y ′ =
AX ′. The following relation holds:

DH(fX , fX′) ≥ DH(fY , fY ′), (2)

where fY and fY ′ are the PDFs of Y, Y ′, respectively.

Due to space restrictions, we omit the proof of this theo-

rem which may be found in [10]. The nature of this proof

is two-fold – first, we show that the Hellinger distance is

constant over an arbitrary dimension preserving orthonormal

transformation. Next, we show that the same truncation of

two random vectors does not increase distance. This implies

that maximizing the Hellinger distance in the lower dimen-

sional space is directly related to minimizing the difference

(i.e. preserving) between the high and low dimensional dis-

tances; they are indeed equivalent statements in the 2 class

case. Hence, our objective of finding the projection which

maximizes the distance between PDFs is parallel to the ob-

jective of preserving the distances between PDFs, albeit with

a different formulation. With this knowledge, we will still

refer to our supervised framework as IPCA.

Let us now define the IPCA projection as one that max-

imizes the information distance between data sets. Specif-

ically, let X = {X1, . . . ,XN} where Xi consists of all

points x ∈ R
d in class i; estimating the PDF of Xi as pi. For-

matting as an optimization problem, we would like to solve:

A = arg max
A:AAT =I

‖D(X ; A)‖2
F . (3)

By maximizing the information distance between class PDFs,

we not only ensure an optimal performance bound on clas-

sification error, but we also preserve the natural information

geometry between classes.
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3.1. Optimization

Gradient ascent (or the method of steepest ascent) allows for

the solution of convex optimization problems by traversing

a surface or curve in the direction of greatest change, iterat-

ing until the maximum is reached. Specifically, let J(A) =
‖D(X ; A)‖2

F be our objective function, measuring the total

information distance between all class PDFs in our projection

space. The direction of the gradient is solved by taking the

partial derivative of J w.r.t. a projection matrix A,

∂

∂A
J(A) =

∑
i

∑
j

2Dij(X ;A)
∂

∂A
Dij(X ;A).

Given the direction of the gradient, the projection matrix can

be updated as

A = A + μ
∂

∂A
J̃(A), (4)

where

∂

∂A
J̃(A) =

∂

∂A
J(A) + Q0A + μQ1A

is the direction of the gradient, constrained to force A to re-

main orthonormal, and μ is a small number regulating the step

size. Variables Q0 and Q1 are defined as

Q0 = −1
2

((
∂

∂A
J(A)

)
AT + A

(
∂

∂A
J(A)

)T
)

Q1 =
1
2

(
∂

∂A
J(A) + Q0A

)(
∂

∂A
J(A) + Q0A

)T

.

The full derivation of this constraint, as well as specific im-

plementation details for estimating the information distances,

can be found in [10]. This process is iterated until the objec-

tive J(A) converges.

3.2. Algorithm

The full method for IPCA, specialized towards the classi-

fication task, is described in Algorithm 1. We note that A is

initialized as a random orthonormal projection matrix due to

the desire to not bias the estimation. While this may result in

finding a local maximum rather than an absolute maximum,

experimental results on our available data has shown that the

algorithm converges to the same point given several random

initializations. If a priori knowledge of the global maximum

is available, one would initialize A in its vicinity.

4. SIMULATION

We now study the performance of IPCA for supervised di-

mensionality reduction, utilizing the well studied Landsat satel-

lite imagery database [11]. This data set consists of satellite

Algorithm 1 Information Preserving Component Analysis

Input: Collection of data classes X = {X1, . . . ,XN} in

R
d; projection dimension m; search step size μ; threshold

ε
1: Initialize A1 ∈ R

m×d as a random orthonormal projec-

tion matrix

2: Calculate D(X ; A1), the information distance matrix in

the projected space

3: while |Ji − Ji−1| > ε do
4: Calculate ∂

∂Ai
J̃ , the direction of the gradient, con-

strained to AAT = I
5: Ai+1 = Ai + μ ∂

∂Ai
J̃

6: Calculate D(X ; Ai+1)
7: J = ‖D(X ;Ai+1)‖2

F

8: i = i + 1
9: end while

Output: Projection matrix A ∈ R
m×d, which maximizes the

information distances between class PDFs.

images of 6 differing soil types. Each sample point is a 36-

dimensional vector corresponding to the 9 intensity values of

a 3 × 3 pixel region (with overlapping regions) in 4 different

spectral bands. The data set has been pre-defined as contain-

ing 4435 training samples and 2000 test samples. The clas-

sification task is then to identify each sample image as the

appropriate soil type, yielding 6 total classes.

We compare IPCA performance to other methods of lin-

ear, supervised dimensionality reduction: linear discriminant

analysis (LDA) [3] and quadratic discriminant analysis with

slice average variance estimation (QDA-SAVE) [12]. We im-

plement several classification methods – linear, radial, and

quadratic kernel support vector machines (SVMs) [13], and

a k-nearest neighbor (k-NN) classifier – as different methods

of dimensionality reduction may be optimized specifically for

certain classification methods (e.g. LDA and linear classifi-

cation). In Table 1, we illustrate the “best case” classifica-

tion performance for all simulations, in which the lowest er-

ror rate is reported over all projection dimensions with val-

ues in the range m ∈ {3 − 25}, emphasizing the best per-

formance for each classifier. We see that IPCA outperforms

LDA and QDA-SAVE for all classifiers except the quadratic

kernel SVM, for which QDA-SAVE narrowly shows better

performance.

Linear Radial Quadratic k-NN

IPCA 13.60 % 9.85 % 10.05 % 9.70 %
LDA 13.70 % 11.35 % 11.25 % 12.60 %

QDA-SAVE 13.65 % 10.15 % 9.90 % 10.15 %

Table 1. Classification error probability

We further investigate the performance with the quadratic

kernel SVM by plotting the classification error as a function

1831



0 5 10 15 20 25
5

10

15

20

25

30

35

40

45

Dimension

E
rr

or
 (%

)
IPCA
LDA
QDA−SAVE

Fig. 1. Classification error probability as a function of dimen-

sion when using a quadratic kernel SVM. IPCA shows far su-

perior performance in low dimensions, while still performing

comparable to QDA-SAVE in the ‘best case’.

of dimension in Fig. 1. It is clear that QDA-SAVE has signif-

icant difficulties in the low dimensional regime, which may

be an issue if significant dimensionality reduction is required

(e.g. compression). In contrast, IPCA shows far superior per-

formance in low dimensions, while still maintaining strong

competitiveness in high dimensions. While not illustrated,

we noticed similar performance with the other classifiers.

5. CONCLUSIONS

In this paper we have shown the ability to find an informa-

tion geometric projection for supervised dimensionality re-

duction using information preserving component analysis. By

maximizing the information distance between class PDFs, we

find a low-dimensional projection which alleviates the curse
of dimensionality and improves classification performance.

We have theoretically shown a direct relation to the Bhat-

tacharya and Chernoff performance bounds, and experimen-

tally demonstrated that space defined by IPCA gives superior

classification performance to comparable methods of super-

vised dimensionality reduction, and is not biased towards any

single classifier. In future work we plan to continue apply-

ing IPCA towards the classification task, and extend to semi-

supervised learning problems.

6. REFERENCES

[1] R. Raich, J. A. Costa, and A. O. Hero, “On dimension-

ality reduction for classification and its applications,”

in Proc. IEEE Intl. Conference on Acoustic Speech and
Signal Processing, May 2006.

[2] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdi-

nov, “Neighbourhood component analysis,” in Neural
Information Processing Systems, 2004, number 17, pp.

513–520.

[3] T. Hastie, R. Tibshirani, and J. Friedman, The Elements
of Statistical Learning, Springer-Verlag, 2001.

[4] K. M. Carter, R. Raich, W. G. Finn, and A. O. Hero,

“Information preserving component analysis: Data pro-

jections for flow cytometry analysis,” IEEE Journal
of Selected Topics in Signal Processing: Special Issue
on Digital Image Processing Techniques for Oncology,

Feb. 2009.

[5] K. E. Hild II, D. Erdogmus, K. Torkkola, and J. C.

Principe, “Feature extraction using information-

theoretic learning,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 28, no. 9, pp. 1385–

1392, Sept. 2006.

[6] K. Fukunaga, Introduction to Statistical Pattern Recog-
nition, Academic Press, 1990, 2nd edition.

[7] P. F. Hsieh, D. S. Wang, and C. W. Hsu, “A linear

feature extraction for multiclass classification problems

based on class mean and covariance discriminant infor-

mation,” IEEE Transactions on Pattern Analalysis and
Machine Intelligence, vol. 28, no. 2, pp. 223–235, Feb.

2006.

[8] R. Kass and P. Vos, Geometrical Foundations of Asymp-
totic Inference, Wiley Series in Probability and Statis-

tics. John Wiley and Sons, NY, USA, 1997.

[9] M. Thangavelu and R. Raich, “Multiclass linear dimen-

sion reduction via a generalized chernoff bound,” in

IEEE Machine Learning for Signal Processing Work-
shop, Oct. 2008.

[10] K. M. Carter, R. Raich, and A. O. Hero, “An in-

formation geometric framework for dimensionality re-

duction,” Tech. Rep., University of Michigan, 2008,

arXiv:0809.4866.

[11] UCI Machine Learning Repository: Stat-
log (Landsat Satellite) Data Set, available

at http://archive.ics.uci.edu/ml/
datasets/Statlog+(Landsat+Satellite).

[12] I. Pardoe, X. Yin, and R. D. Cook, “Graphical tools

for quadratic discriminant analysis,” Technometrics, vol.

49, no. 2, May 2007.

[13] C.-C. Chang and C.-J. Lin, LIBSVM: A li-
brary for support vector machines, 2001, Soft-

ware available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

1832


