
FAST AND EFFICIENT DIMENSIONALITY REDUCTION USING STRUCTURALLY
RANDOM MATRICES

Thong T. Do†, Lu Gan‡, Yi Chen†, Nam Nguyen† and Trac D. Tran† ∗

† Department of Electrical and Computer Engineering
The Johns Hopkins University

‡School of Engineering and Design
Brunel University, UK

ABSTRACT

Structurally Random Matrices (SRM) are first proposed in [1] as
fast and highly efficient measurement operators for large scale com-
pressed sensing applications. Motivated by the bridge between com-
pressed sensing and the Johnson-Lindenstrauss lemma [2] , this pa-
per introduces a related application of SRMs regarding to realizing
a fast and highly efficient embedding. In particular, it shows that
a SRM is also a promising dimensionality reduction transform that
preserves all pairwise distances of high dimensional vectors within
an arbitrarily small factor ε, provided that the projection dimension
is on the order of O(ε−2 log3 N), where N denotes the number of d-
dimensional vectors. In other words, SRM can be viewed as the sub-
optimal Johnson-Lindenstrauss embedding that, however, owns very
low computational complexity O(d log d) and highly efficient im-
plementation that uses only O(d) random bits, making it a promis-
ing candidate for practical, large scale applications where efficiency
and speed of computation are highly critical.

Index Terms— Low-distortion embedding, Johnson-Lindenstrauss,
dimensionality reduction, compressed sensing, machine learning.

1. INTRODUCTION

According to the theory of compressed sensing [3], a K-sparse sig-
nal x of length d which has at most K nonzero coefficients under
some linear transform, can be exactly reconstructed from its random
projection of a much lower dimension O(K log d):

y = Φx

where Φ is a random projection or a random matrix of subGaussian
i.i.d entries. When an input signal x is large, for example, a (vec-
torized) megapixel image, using a random projection is clearly im-
practical as huge amount of computational complexity and memory
buffering are needed to compute the projection y.

Recently, Structurally Random Matrices (SRM) have been pro-
posed [1] as a fast and highly efficient compressed sensing method
that somewhat surprisingly guarantees optimal performance. A
structurally random matrix Φ (using the local randomizer) is a
product of three matrices:

Φ =

√
d

M
DFR (1)

where
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• R, the local randomizer, is a d × d random diagonal matrix
whose diagonal entries Rii are i.i.d Bernoulli random vari-
ables P(Rii = ±1) = 1

2
.

• F is a d × d orthonormal matrix whose absolute magnitude
of all entries are on the order of O( 1√

d
). In practice, only

F with fast computation and efficient implementation such as
the FFT, the DCT and the WHT... are chosen. Finally,

• D, the uniformly random downsampler, is a matrix composed
of nonzero rows of a random diagonal matrix whose diagonal
entries Dii are i.i.d binary random variables with P(Dii =
1) = M

d
. On average, D contains M nonzero rows and thus,

Φ is a M × d matrix.

Algorithmically, the projection y can be acquired efficiently as
follows: (i) pre-randomizing x randomly flipping sign of entries of
x, (ii) applying some fast transform to the randomized x and (iii)
finally, randomly keeping M those transform coefficients.

According to the classical Johnson and Lindenstrauss (JL)
lemma [4], any set of N vectors in d-dimensional Euclidean space
can be embedded into M = O(ε−2 log N)- dimensional Euclidean
space so that all pairwise distances are preserved within an arbi-
trarily small factor ε. In other words, there exists an embedding
A : Rd → RM such that for all pair of vectors u and v in the set
of N vectors in Rd:

(1 − ε)‖u − v‖2 ≤ ‖A(u) − A(v)‖2 ≤ (1 + ε)‖u − v‖2. (2)

Such an embedding will be referred as the JL-embedding or JL-
transform if M = O(ε−2 log N) and suboptimal JL-transform if
M > O(ε−2 log N).

In a recent inspiring paper [2], R. Baraniuk et al. shows an in-
teresting connection between compressed sensing and the JL-lemma
that any distribution that yields a satisfactory JL-transform will
also generate measurement ensemble satisfying Restricted Isom-
etry Property (RIP), a sufficient condition for being the optimal
measurement ensemble.

In this paper, we explore the converse relationship that SRM,
the optimal measurement ensemble, is also a promising candidate
of a low distortion embedding. Compared with other existing state-
of-the-art JL transforms, SRM can be viewed as one of the fastest
and most efficient (suboptimal) JL-transforms. Although it can only
guarantee a weaker theoretical bound of dimensionality reduction
O(ε−2 log3 N), it can be easily implemented as serial operators
without a need of explicitly storing the transform in memory, a
unique feature that might not be available with other existing JL-
transforms.
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2. BACKGROUND

Previously, almost all JL-transforms proposed are random ma-
trices of i.i.d entries of some distribution such as Gaussian or
Bernoulli. Since a major application of the JL lemma is in large
database systems, fast and efficient implementation of JL-transform
is highly critical. With a dense and random matrix, the computa-
tional complexity and the memory buffering requirement are about
O(dε−2 log N), which is expensive when ε is small as d is often
very large (or otherwise there is no need of dimensionality reduc-
tion). One obvious solution to speed up the projection process is to
use a sparse random matrix. D. Achlioptas first proposed a sparse
random matrix A whose entries Aij are i.i.d random variables with
the following sparse distribution [5]:

Aij =

⎧⎪⎨
⎪⎩
√

3 with probability 1
6

0 with probability 2
3

−√
3 with probability 1

6

(3)

As the number of nonzero entries of the matrix A is, on av-
erage, 3 times less than a dense random matrix, the speed of this
sparse projection is 3 times faster than that of a dense random ma-
trix. It is aslo shown that the matrix can not be futher sparse without
incurring a penalty in the dimensionality. To speed up the projection
computation process more than a constant times, in [6] N. Ailon et
al. proposed a scheme of Fast JL-Transform (FJLT). FJLT is slightly
reminiscent to our SRM as it is also a product of three matrices:
PFR, where F and R are similar to those in the SRM and P is the
random matrix of i.i.d entries of some sparse distribution:

Pij

{
N (0, q−1) with probabilityq

0 with probability1 − q

where q = O( log2 N
d

).

Roughly speaking, since the average number of nonzero entries
of the matrix P is just O(log2 N), FJLT is a fast scheme because
there is a significant reduction of the amount of computation of P.
In [7], J. Matousek shown that it is possible to replace the Gaus-
sian distribution N (0, q−1) by Bernoulli (±1) distribution without
incurring the dimensionality penalty, further speeding up the com-
putation. Then, in [8], D. Ailon et al. showed a simpler variant
of FJLT by replacing a sparse random matrix P by a deterministic
4-wise independent code matrix (e.g. BCH codes). More recently,
E. Liberty introdues the Lean Walsh transform [9]. Although all
these fast transforms keep the optimality of dimension reduction,
O(ε−2 log N), they all require some restriction of input vectors u.

For example, the FJLT requires ‖u‖∞ ≤ O((d/M)−1/2) while the

BCH-code algorithm requires ‖u‖4 ≤ O(d−1/4). In other words,
these transforms only keep the optimality of dimension reduction for
a certain subset of vectors u ∈ Rd.

The computational complexity of FJLT’s is roughly O(d log d+
ε−2 log3 N), which is much smaller than that of a dense random em-
bedding O(dε−2 log N) when ε is relatively small. Unfortunately,
although P is a very sparse matrix, its entries are still completely
random and thus, a certain amount of space might be required to
store P explicitly. The main idea of FJLT is that it uses a fast com-
putatable matrix FR to precondition the signal before applying a
very sparse matrix because in general, a sparse matrix will signifi-
cantly distort a sparse signal.

Despite its independent development, our proposed SRM shares
the similarly core principle in the compressed sensing field. It uses
a preprocessing operator FR to distribute the information of input

signal over all measurements, enabling us to recover the signal from
a subset of measurements. It is further shown in this paper that a
uniformly random subset of those measurements preserves pairwise
distances of original vectors. This principle comes from the fact
that energy of a randomized signal is spread out in some fixed linear
transform that is illustated in Fig. 1. DCT coefficients of a random-
ized 512×512 Lena image (its mean is subtracted before randomiza-
tion) are almost nonzero and more uniformly distributed than those
of the original image, implying that energy of the randomized signal
is more equally distributed among those coefficients.
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Fig. 1. 1D-DCT coefficients of a randomized zero-mean 512 × 512
Lena image. Randomization is done by randomly flipping sign of
pixels of the image

.

Hence, rather than projecting transform coefficients onto some
sparse random basis as in FJLT, SRM directly samples them in a
uniformly random fashion that significantly simplify the projection
process. Due to this simplification, SRM incurs some penalty in the
level of dimensionality reduction, O(ε−2 log3 N). However, this is
only a theoretical bound for the worst case analysis, i.e. there is no
restriction of input vectors u. As one can clearly see in the numberi-
cal experiments in the next section, the difference of performance be-
tween SRM and completely random projection is hardly observable.
In practice, SRM is more appropriate for large scale applcications
that favor simple, efficient implementation and fast computation.

3. THEORETICAL ANALYSIS

Theorem 3.1. Let P be an arbitrary set of N points in Rd and
suppose that N ≥ d. Define Ψ = d

M
DFR as an M × d SRM,

where D is the uniformly random downsampler, F is an orthonormal
matrix with all absolute magnitude of entries on the order of O( 1√

d
)

and R is the local random randomizer as described in Section I.
When M = O(ε−2 log3 N), with probability at least 1 − 1

N
, for all

u, v ∈ P
(1 − ε)‖u − v‖2 ≤ ‖Φu − Φv‖2 ≤ (1 + ε)‖u − v‖2

(4)

Proof. The proof uses nothing more than the Hoeffding’s and Bern-
stein’s inequalities [10] of concentration. Denote w = u − v. To
show (4), it is sufficient to show that with probability at least 1− 1

N
:

(1 − ε)‖w‖2 ≤ ‖Φw‖2 ≤ (1 + ε)‖w‖2
(5)
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for all
(

N
2

)
possible values of w. Without loss of generality, we can

assume that ‖w‖2 = 1. As shown at the following proposition,
E{‖Φw‖2} = 1 and thus, (5) implies that ‖Φw‖2 is concentrated
around its expected value

Proposition 3.1. With a vector w ∈ Rd and ‖w‖ = 1, denote
y = FRw and K = max1≤i≤d |yi|2. Then,

P (|‖Φw‖2 − 1| ≥ ε) ≤ 2 exp(
−ε2

2( d2K2

M
+ εdK

3M
)
) (6)

Proof. This is a simple corollary of the classical Bernstein’s inequal-
ity of concentration. First, notice that ‖Dy‖2 can be rewritten as the
following:

‖Φw‖2 =
d

M
‖Dy‖2 =

d

M

d∑
i=1

ρiy
2
i

where ρi are i.i.d binary random variables P (ρi = 1) = M
d

and

E{ρi} = M
d

. Due to the orthonormality of FR:

‖y‖2 = ‖FRw‖2 = ‖w‖2 = 1

and thus,

‖Φw‖2 − 1 =
d

M

d∑
i=1

(ρi − M

d
)y2

i . (7)

Notice that the right side of (7) is a sum of zero-mean independent
random variables E{‖Φw‖2 − 1} = 0 and

σ2 = Var{‖Φw‖2 − 1} =
d

M
(1 − M

d
)

d∑
i=1

y4
i

, where the last equality is due to Var{ρi − M
d
} = M

d
(1 − M

d
).

Also, it is easy to verify that σ2 ≤ d2K2

M
and that |(ρi −

M
d

)y2
i | ≤ max1≤i≤d y2

i = K for all i ∈ {1, 2, . . . , d}. Applying
the classical Bernstein’s inequality of concentration for a sum of
zero-mean independent random variables [10], we derive (6).

The next proposition bounds the value of K:

Proposition 3.2. With a vector w ∈ Rd and ‖w‖ = 1, denote
y = FRw. Let c be a positive constant such that max1≤i,j≤d |Fij | =√

c
d

. Then,

P{ max
1≤i≤d

|yi| ≥
√

2c log(2d/α)

d
} ≤ α (8)

Proof. This is a simple corollary of the classical Hoeffding’s in-
equality of concentration. Let Fik be the kth entry on the ith row of
the matrix F and Rkk be the kth entry on the main diagonal of the
diagonal matrix R,

yi =

d∑
k=1

RkkFikwk =

d∑
k=1

Zk

where Zk = RkkFikwk are zero-mean independent random vari-
ables, Zk = ±Fikwk. It is easy to verify E{yi} = 0 because of
E{Zk} = 0.

Applying the Hoeffding’s inequality of concentration for a sum
of independent random variables {Zk}d

k=1 [10]

P (|yi| ≥ t) ≤ 2 exp(
−t2

2
∑d

k=1 F 2
ikw2

k

)

Notice that as ‖w‖2 = 1.

d∑
k=1

F 2
ikw2

k ≤ max
1≤k≤d

F 2
ik

d∑
k=1

w2
k = max

1≤k≤d
F 2

ik =
c

d
.

Thus,

P (|yi| ≥ t) ≤ 2 exp(
−dt2

2c
).

Applying the union bound for a supreme of a random sequence

P ( max
i≤i≤d

|yi| ≥ t) ≤ 2d exp(
−dt2

2c
).

Finally, choose t =
√

2c log(2d/α)
d

, we derive the inequality (8).

Now define the probabilistic event A = {K ≤ 2c log(2d/α)
d

}.
Conditioning on the event A,

σ2|A ≤ 2d2

M
K2 ≤ (2c log 2d/α)2

M
.

For each of
(

N
2

)
possible values of w, let a probabilistic event

Bw = {|‖Φw‖2 − 1| ≥ ε}. Also, denote the union probabilistic
event B =

⋃
w Bw. Note that B is the probabilistic event that Φ

does not satisfy the inequality (4). Thus, the probability of Φ does
not satisfy the inequality (4) is:

P (B) ≤
(

N

2

)
P (Bw) ≤

(
N

2

)
(P (Bw|A) + P (A)). (9)

From Proposition 3.1, we have

P (Bw|A) ≤ 2 exp{ −ε2

2( (2c log 2d/α)2

M
+ ε2c log(2d/α)

3M
)
}.

With 0 < ε, α ≤ 1 and M ≤ d,
(2c log 2d/α)2

M
≥ ε2c log(2d/α)

3M
and

thus,

P (Bw|A) ≤ 2 exp{ −ε2

4 (2c log 2d/α)2

M

}

Notice that from the Proposition 3.2 P (A) ≤ α. Choose α =
1

N3 , we finally derive:

P (B) ≤ 2

(
N

2

)
exp{ −ε2

4 (2c log 2dN3)2

M

} +
1

2N
. (10)

When M ≥ 32c2ε−2 log N2(log 2dN3)2 = O(ε−2 log3 N),
the first term in the right-hand side of (10) is less than 1

2N
and thus

the right-hand side is less than 1
N

, which implies that (4) holds with

probability at least 1 − 1
N
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4. SIMULATION RESULTS

To demonstrate the effectiveness of the SRM in dimensionality re-
duction, we conduct the experiments as described in [11]. Specif-
ically, the dataset consists of N = 1000 image windows of size
50 × 50 (i.e., the original dimensionality d = 2500). These image
windows are chosen randomly from thirteen 8-bit grayscale natural
images1. The reduced dimensionality M ranges from 1 to 800. For
each M , we generate a projection matrix Φ that maps Rd to RM

and randomly select 100 pairs of image windows. Then, for each
pair ui and vi, we compute the projected pair Φui and Φvi. The
distortion between the original and projected pairs is measured by
the relative difference in the Euclidean distances between the two
pairs

DM (i) =
|‖Φui − Φvi‖2 − ‖ui − vi‖2|

‖ui − vi‖2

The overall distortion at dimensionality M is averaged over
the 100 pairs D(M) = 1/100

∑100
i=1 DM (i). In our experiments,

we compare the performance of four projection methods. (i) Ran-
dom projection (RP), where the entries of the projection matrix
Φ are i.i.d. Gaussian random variables. (ii) Sparse random pro-
jection (SRP), where the entries of Φ are drawn according to the
distribution in (3). (iii) Principal component analysis (PCA), where
Φ consists of the eigenvectors corresponding to the M largest eigen-
values of the covariance matrix of the dataset. And (iv) SRM. The
averaged distortion D as a function of the reduced dimensionality
M for each of the four projection methods is shown in Fig. 2. As one
can clearly see that performances of random methods are almost the
same and better than that of PCA for highly reduced dimensionality.
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Fig. 2. Average relative distortion caused by methods of dimension-
ality reduction: RP, SRP, PCA and SRM.

5. CONCLUSIONS

This paper presents a theoretical analysis of SRM (using the local
randomizer) as a promising dimensionality reduction transform.
This novel transform has very low complexity O(d log d) and O(d)
random bits and highly efficient implementation because there is
no need to store the transform explicitly in memory. Theoretically,
it guarantees reduced dimensionality of O(ε−2 log3 N) although

1Available at http://www.cis.hut.fi/projects/ica/data/images/

simulation results show that its performance is completely com-
parable to that of a random projection. Prominent applications of
SRM include speeding up similarity search algorithms based on
low-distortion embedding such as the nearest neighbor approxima-
tion [6], realizing low-rank approximation of a large matrix [12], just
to name a few. In addition, we also observe that SRM with the global
randomizer [1] (to replace the matrix R by a uniformly random
permutation matrix) is also a good candidate of low-distortion em-
bedding. However, its theoretical analysis would be more involved
because of the combinatorial nature of the random permutation and
thus we will leave it for our future work.
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