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ABSTRACT

In this paper, we introduce a novel vector quantization (VQ) scheme
for distributing the quantization error equally among the quantized
dimensions. Afterwards, the proposed VQ scheme is used to perform
feature selection in on-line handwritten whiteboard note recognition
based on discrete Hidden-Markov-Models (HMMs).

In an experimental section we show that the novel VQ scheme
derives feature sets which contain less than 50 % features, enabling
recognition with better performance at less computational costs. Fi-
nally, the derived feature set is compared to the quantized features
selected within a continuous HMM-based system: the features se-
lected after quantization with the proposed VQ scheme are proved to
perform significantly better than those in the continuous system.

Index Terms— handwriting recognition, Hidden-Markov-
Models, vector quantization, feature selection

1. INTRODUCTION

Automatic Speech Recognition (ASR) and on-line handwriting recog-
nition (HWR) are closely related: using a speech recognizer based
on Hidden-Markov-Models (HMMs, [1]) for on-line HWR has been
introduced in [2] for the first time — on the ICASSP 1986.

In a common HMM-based HWR system, each symbol (e. g. let-
ter) is represented by a HMM. Words are recognized by combining
letter-HMMs using a dictionary [3]. While high recognition rates
are reported for isolated word recognition systems [4], performance
considerably drops when it comes to recognition of whole, uncon-
strained handwritten text lines [5]. An even more demanding task is
HWR of whiteboard notes which plays an important role in so-called
“smart meeting room” scenarios (see e. g. [6]): when writing on a
whiteboard the writer stands rather than sits and the writing arm does
not rest introducing additional variation. Furthermore it has been
observed that size and width of letters and words vary on a higher
degree on whiteboards than on tablets [5].

Literature distinguishes between continuous and discrete HMMs.
In case of continuous HMMs, the observation probability is modeled
by mixtures of Gaussians [1], whereas for discrete HMMs the proba-
bility computation is a simple table look-up. In the latter case vector
quantization (VQ) is performed to transform the continuous data to
discrete symbols. While in ASR continuous HMMs are increasingly
accepted, it remains unclear whether discrete or continuous HMMs
should be used in on-line HWR of whiteboard notes. In previous
work [7], we studied the use of discrete HMMs for on-line HWR of
whiteboard notes and the influence of quantization on the features.
It turned out that the pen’s pressure information (see Sec. 2) looses
significance although this feature has been proved to be important

for continuous HMM-based HWR in [8] by applying the “sequential
forward selection” (SFS, [9]), a common technique in feature selec-
tion [10]. We also showed that due to the design of the quantizer and
the distribution of the features, although normalized, the quantization
error is not distributed equally among the dimensions, indicating a
varying contribution of the features to the quantization.

In this work, we select features for discrete HMM based HWR of
whiteboard notes using SFS. Thereby the above mentioned unevenly
balanced quantization error is taken into account: when selecting
features combined with VQ, the significance of one feature can be
influenced either by the quality of its quantization or by its expres-
siveness for the current recognition task. Hence, we describe a novel
VQ scheme based on reshaping the Voronoi regions gained by the
k-Means algorithm [11]. This is done to achieve an equal contribution
of all features to the quantization, i. e. the quantization error of the
normalized features is distributed equally among the dimensions.

To that end, the next section gives a brief overview of the HWR
system. Section 3 reviews VQ and the SFS for feature selection.
The novel VQ scheme for achieving a quantization error which is
distributed equally among the dimensions is introduced in Sec. 4.
The impact of the novel error shaping on the selected feature sets is
shown in the experimental section (Sec. 5). Finally conclusions and
discussion are presented in Sec. 6.

2. SYSTEM OVERVIEW

This section gives a brief overview of the recognition system used
for the experiments in Sec. 5. Further details can be found in [7].
The handwritten whiteboard data is first recorded using the E B E A M-
system deriving sample points s(t) = (x(t), y(t), p(t))T, where
x(t) denotes the x-coordinate, y(t) the y-coordinate, and p(t) the
pressure of the pen at time instance t. Afterwards, the recorded data
is heuristically segmented into lines [5] and resampled in order to
achieve a space-equidistant sampling. Then, a histogram-based skew-
and slant-correction is performed, and all text lines are normalized to
meet a distance of “one” between the corpus and the base line using
a histogram-based projection approach.

Following the preprocessing and normalization, 24 state-of-the-
art on-line and off-line features are extracted. The extracted on-
line features are: the pen’s “pressure”, indicating whether the pen
touches the whiteboard surface (f1); a velocity equivalent, which
is computed before resampling (f2); the x- and y-coordinate after
resampling (f3,4); the “writing direction”, i. e. the angle α of the
strokes, coded as sin α and cos α (f5,6); and the “curvature”, i. e.
the difference of consecutive angles Δα = α(t)− α(t− 1), coded
as sinΔα and cos Δα (f7,8). Besides, on-line features describing
the relation between the sample point s(t) to its neighbors are used:
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a logarithmic transformation of the “vicinity aspect” v, sign(v) ·
lg(1 + |v|) (f9); the “vicinity slope”, i. e. the angle ϕ between the
line [s(t − τ), s(t)], whereby τ < t denotes the τ th sample point
before s(t), and the bottom line, coded as sin ϕ and cos ϕ (f10,11);
and the “vicinity curliness”, the length of the trajectory normalized
by max(|Δx|; |Δy|) (f12). Finally the average square distance to
each point in the trajectory and the line [s(t− τ), s(t)] is given (f13).
The off-line features are: a 3 × 3 “context map” to incorporate a
30× 30 partition of the currently written letter’s image (f14−22); and
“ascenders” and “descenders” (the number of pixels above respectively
beneath the current sample point) (f23,24). As the values of the
features vary in different ranges, each dimension d of the feature
vector is normalized to a mean of μd = 0 and variance of vard = 1.

After feature extraction, the handwritten data is recognized by a
discrete HMM-based recognizer: each symbol (each letter in this pa-
per) is modeled by one HMM. For comparability, the HMM topology
is mainly adopted from [5]. Training of the HMMs is performed by
the EM algorithm. Using the Viterbi algorithm, the handwritten data
is recognized and segmented [1].

3. VECTOR QUANTIZATION AND FEATURE SELECTION

Vector Quantization For using discrete HMMs, all continuous

observations F are assigned to a stream of discrete observations f̂ via
quantization, whereby the continuous, D-dimensional sequence F =
(f(1), . . . , f(T )), f(t) ∈ R

D of length T is mapped to a discrete, one

dimensional sequence of codebook indices f̂ = (f̂(1), . . . , f̂(T )),

f̂(t) ∈ N provided by a codebook C = (c(1), . . . , c(Ncdb)), c(k) ∈
R

D containing |C| = Ncdb centroids c(i) ∈ R
D [11]. For D =

1 this mapping is called scalar, and in all other cases (D ≥ 2)
vector quantization (VQ). The codebook C and its entries c(i) are
derived from a training set containing Ntrain training sequences Fj ,
by partitioning the D-dimensional feature space defined by Strain into
Ncdb so-called Voronoi cells Vi represented by the centroids c(i) [11].
In this paper, this is performed by the well known k-Means algorithm
as described e. g. in [11]. The Ncdb = 16 Voronoi cells partitioning
the space spanned by the two features f6 and f9 (see Sec. 2) are
shown in Fig. 1 (left).

Once a codebook C is generated, the assignment of the continu-
ous sequence to the codebook entries is a minimum distance search

f̂(t) = argmin
1≤k≤Ncdb

d(f(t), c(k)), (1)

where d(f(t), c(k)) is commonly the square Euclidean distance. The
quality of the VQ is measured by its distortion. In this paper, the
signal-to-noise ratio (SNR) is used:

SNR = 10 lg
S̄

Ē
= 10 lg

∑Ntrain
j=1

∑Tj

t=1 ||fj(t)||2∑Ntrain
j=1

∑Tj

t=1 ||fj(t)− c(f̂j(t))||2
, (2)

with S̄ the average, square signal amplitude, Ē the average, square
quantization error of all observations Fj and fj(t) the tth of Tj feature
vectors in the j th of Ntrain sentences in the training set. Hence, the
SNR is the average signal energy normalized by the distortion on a
logarithmic scale [12]. As mentioned in Sec. 2, each dimension of the
continuous feature vector, and therefore each feature, is normalized
by its mean and variance value, yielding an average square signal
amplitude of s̄d = 1 in each dimension. The SNR can then be
expressed by the average square quantization error ēd of each feature:

SNR = 10 lg
S̄

Ē
= 10 ·

[
lg D − lg

(
D∑

d=1

ēd

)]
, (3)

Fig. 1. Voronoi cells and centroids for joint VQ of the features f6 and
f9 (left), overall and (unevenly distributed) per feature SNR (right).

Fig. 2. VQ post processing depicted as control loop for achieving an
equally distributed quantization error.

with ēd =
∑Ntrain

j=1

∑Tj

t=1(fj,d(t) − cf̂j ,d(t))2. The overall as well

as the per-dimension SNR when quantizing the features f6 and f9

with the centroids c(i) in Fig. 1 (left) is shown in Fig. 1 (right). As
can be seen, although normalized, the per-feature SNR and hence,
the quantization error are not equal. This has also been shown for
different vector quantizers and a higher number of features in [7].

Feature Selection Given a setF = {f1, . . . , fD} of D features
fd, feature selection aims at deriving a new set Xk = {x1, . . . , xk}
containing k ≤ D features out of F , in a way such that the perfor-
mance of the underlying recognition system stays the same or even
rises while k declines [10]. To avoid the computationally infeasible
number of combinations when forming all possible sets of features
deducible from F , in this paper the sequential forward selection
(SFS, [9]) is used: starting with a feature set X1 = fd, 1 ≤ d ≤ D,
which contains one single feature, the set is iteratively augmented and
evaluated until all features are added, i. e. XD = F . The evaluation
objective is the character-accuracy of the system, measured on the
validation set (see Sec. 5).

4. VORONOI CELL SHAPING

As pointed out in Sec. 3, the quantization error introduced by the
quantization is not distributed equally among the dimensions. The
significance of the features during feature selection is therefore either
influenced by (im)proper quantization or by the feature’s expressive-
ness: a well-suited feature quantized with high quantization error
may appear less significant than a poorer feature. Hence, this section
describes our approach for distributing the quantization error equally

1818



among the dimensions, consisting of two stages: First, the centroids
estimated as described in Sec. 3. Once the centroids are found, the
Voronoi cells are shaped in order to achieve a distinct distribution of
the quantization error.

4.1. Preliminaries

The vector r = (r1, . . . , rD)T is introduced, which contains coeffi-
cients rd corresponding to the features fd. The goal of our VQ is to
provide average per dimension quantization errors ēd with

ē1/r1 = ē2/r2 = . . . = ēD/rD. (4)

Throughout this paper rd = 1 is chosen for 1 ≤ d ≤ D. The shaping
of the Voronoi cells is achieved by choosing the distance measure

d(fj(t), c(k)) = (fj(t)− c(k))T ·G · (fj(t)− c(k)), (5)

with G a diagonal weight-matrix containing the weights gd of the
features fd in Eq. 1. By selecting the weights gd, the average quan-
tization error ēd of the feature fd can be influenced. To show this
property, the following relations between the weights gd are exem-
plary assumed:

g1 = x · g2 = x2 · g3 = . . . = xD−1 · g, x, g > 1. (6)

The feature fj(t) is then assigned to c(k) instead of c(k′) if

d(fj(t), c(k)) < d(fj(t), c(k
′))⇒ (7)

D∑
d=1

(fj,d(t)− cd(k))2xD−dg <
D∑

d=1

(fj,d(t)− cd(k′))2xD−dg.

Dividing Eq. 7 by xD−1 · g > 1 yields

(fj,1(t)− c1(k))2+ . . . +
(fj,D(t)− cD(k))2

xD−1
<

(fj,1(t)− c1(k
′))2+ . . . +

(fj,D(t)− cD(k′))2

xD−1
.

(8)

As can be seen from the example in Eq. 8, choosing x = 1 lets each
feature contribute to the overall distortion d(fj(t), c(k)) by its actual
distance to the corresponding centroid dimension cd(k). However,
when rising the value of x the contribution of higher numbered fea-
tures decays. Finally, when choosing x →∞ only the distance of the
first feature contributes to the distortion and is therefore minimized.

4.2. Weight Estimation

The analytic relation between the actual quantization error ēd of each
feature fd and the corresponding weight gd is unknown. Hence, a
control loop is used for recursively fitting the weights gd, 1 ≤ d ≤ D
to achieve an error distribution as defined by Eq. 4. The weight gdmax

of the feature fmax which differs most from the distribution defined by
Eq. 4, edmax is not changed, all other weights are lowered by a factor
depending on ēdmax − ēd > 0. After an initialization, gd(0) = 1/D,
the weights gd(n) are recursively updated:

g̃d(n+1) = gd(n) ·exp
[
α ·

ēd(n)/rd −max1≤δ≤D
ēδ(n)/rδ

max1≤δ≤D
ēδ(n)/rδ

]
, (9)

with 1 ≤ d ≤ D and α an experimentally chosen step size. The
normalization by max(·) in Eq. 9 is necessary, due to the variation
in the absolute value of the quantization errors. In order to prevent

Fig. 3. Shaped Voronoi cells around the same centroids as in Fig. 1
(left), overall and (evenly distributed) per feature SNR (right).

an infinite growing of the updated weights g̃d(n + 1) their values are

normalized so that they meet
∑D

d=1 gd(n + 1) = 1.

The weight adaptation is continued until the change in the in-
dividual quantization errors ēd falls below a threshold. Figure 2
shows the control loop in order to find the desired weighting values
gd. The result of applying the proposed VQ scheme on the centroid
and feature distribution as depicted in Fig. 1 is shown in Figure 3:
after shaping the Voronoi cells, the SNR of both features is the same.
However, this is accompanied by a slight drop in the overall SNR.

5. EXPERIMENTS

The experiments presented in this section are conducted on the IAM-
OnDB database, containing handwritten, heuristically line-segmented
whiteboard notes [13]. Comparability of the results is provided by
using the settings of the writer-independent IAM-onDB-t1 bench-
mark, which consists of 56 different letters and provides well-defined
writer-disjunct sets (one for training, two for validation, and one for
testing). Statistical significance of the results is proved by the one-
sided t-test, giving the probability pN of rejecting the hypothesis
“both approaches perform equally.” Two experiments are conducted.

In the first experiment (Exp. 1), feature selection is performed
on quantized data applying the novel VQ scheme as proposed in
Sec. 4. Thereby, five different codebook sizes Ncdb, with Ncdb ∈
{10, 100, 500, 1000, 2000} are used, yielding an even distribution
of the quantization error, i. e. all features contribute equally. The
character-accuracy (ACC) derived from the validation set with a
discrete HMM-based classifier which parameters are trained on the
validation set, is shown in Fig. 4. As can be seen, for each codebook
size peak performance is reached using less than the maximum of
D = 24 features. The best performing feature set is shown as feature
map: the features are placed in a 4× 6 “matrix,” where the feature
number rises from left to right and top to bottom beginning with
the feature f1 in the upper left corner. A solid square (�) indicates
that the current feature is part of the feature set (see Fig. 4). The
best performing parameters and feature sets are used to conduct a
final test on the test set of the IAM-onDB-t1 database; hence, an
implicit adaptation to the test set is avoided. Table 1 summarizes the
results and gives the relative improvement Δr and the significance
pN compared the results presented in [7]. Please note that the results
presented here are given as character-ACC. In all cases, the system
proposed in [7], which uses the same number of codebook entries
and the standard VQ on the whole feature set without the novel
Voronoi cell shaping, is outperformed. All improvements are highly
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Fig. 4. Character-ACC for varying codebook sizes and number of
selected features as well as the feature maps when feature selection
is performed with and without the novel VQ. An explanation of the
feature map is given and the results as presented in [7] are shown.

statistically significant. The peak performance of at,2000 = 68.4%,
a relative improvement of Δr = 1.5% is achieved with only k = 10
features, i. e. less than half of the D features used in [7].

Features are selected using the SFS as explained in [8] in the
second experiment (Exp. 2) using a continuous HMM-based HWR
system on the continuous features, hence the features are not vector
quantized. On the derived feature set, VQ using a conventional
quantizer without the novel shaping of the Voronoi Cells is applied.
The peak character-ACC measured on the validation set for each
codebook size as well as the feature map are shown in Fig. 4. Table 1
summarizes the results as character-ACC achieved on the test set,
the relative improvement Δr, and the statistical significance of the
improvement. Again, to avoid an implicit adaptation to the test set,
the parameters yielding the best performance on the validation set are
used for the final test. As can be seen, a different, optimal feature set
is derived, achieving higher word-accuracies for all codebook sizes.
The improvement is significant for Ncdb ∈ {100, 1000, 2000}. As
pointed out in [7], the pressure information loses significance during
VQ. However, Fig. 4 shows that this feature (f1) is part of the feature
set used in Exp. 2, due to its importance in continuous systems [8].
This is the main reason for the drop in performance.

6. OUTLOOK

In this paper we first introduced a novel VQ scheme which is capable
of deriving an even distribution of quantization errors among the quan-
tized dimensions, i. e. each dimension contributes to the quantization
process equally. We then used this VQ scheme for feature selection
using the SFS. In an experimental section it has been shown that
with the novel VQ scheme feature sets can be derived which perform
better and utilize less features than a recently published system [7]. It
turned out that systems which utilize the features of the found feature
sets outperform systems which use the quantized features of a feature
set which has been found by a continuous HMM system.

As pointed out in Sec. 4, our novel VQ scheme consists of two
consecutive steps. First the centroids are computed, then the Voronoi

codebook size Ncdb, at,Ncdb

10 100 500 1000 2000

Exp. 1 50.0 % 62.9 % 66.4 % 67.2 % 68.4 %

[7] 47.0 % 61.3 % 65.1 % 66.4 % 67.4 %
Δr 6.0 % 2.5 % 2.0 % 1.2 % 1.5 %
pN > 0.99 > 0.99 > 0.99 0.99 > 0.99

Exp. 2 45.5 % 62.8 % 66.1 % 66.5 % 67.8 %
Δr -3.3 % 2.4 % 1.5 % 0.2 % 0.6 %
pN > 0.99 > 0.99 > 0.99 0.62 0.89

Table 1. Results of the experiments Exp. 1, Exp. 2, and those as
presented in [7] measured in character-ACC on the test set as well as
the relative improvement Δr and the significance pN .

cells are shaped in order to meet a certain distribution. In future
work, we aim at combining the centroid computation and Voronoi
cell shaping in a one stage approach in order to raise the quantization
performance. The ACC-curves in Fig. 4 (especially for Ncdb =
10) do not run smooth indicting the “nesting" effect of the SFS:
once a feature is selected it cannot be discarded from the set Xk. In
future work, we plan to combine more sophisticated feature selection
approaches such as the sequential forward floating selection (SFFS,
see [10]) in conjunction with our novel VQ scheme.
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