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ABSTRACT
Many recent works have combined two machine learning
topics, learning of supervised distance metrics and manifold
embedding methods, into supervised nonlinear dimension-
ality reduction methods. We show that a combination of
an early metric learning method and a recent unsupervised
dimensionality reduction method empirically outperforms
previous methods. In our method, the Riemannian distance
metric measures local change of class distributions, and the
dimensionality reduction method makes a rigorous tradeoff
between precision and recall in retrieving similar data points
based on the reduced-dimensional display. The resulting su-
pervised visualizations are good for finding (sets of) similar
data samples that have similar class distributions.

Index Terms— dimensionality reduction, information re-
trieval, metric learning, supervised manifold embedding

1. INTRODUCTION

Dimensionality reduction for visualizing high-dimensional
data is central in exploratory data analysis. It is also used for
preprocessing in pattern recognition and data analysis. We
consider setups where there are known class labels available
for some of the data points; the labels can come from any
auxiliary information of the data, such as category labels or
ontologies. Given the labeled data, supervised dimension-
ality reduction is used to reveal between-class relationships.
The labels supervise the dimensionality reduction by telling
which kind of variation in data is worth analyzing, as op-
posed to noise or irrelevant trends. The idea is that variation
in the input features is worth preserving in the dimensionality
reduction if it corresponds to changes in the class labels.

A typical approach for supervised nonlinear embedding
is to modify input-space distances to take into account class
labels of individual data points (see e.g. [2]); a similar idea
appears in [7]. Such discriminative distances cannot be rig-
orously computed without knowing the class labels of the
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points, which can yield poor generalization to new, unlabeled
points. Alternatively, some methods add a penalty term to
the cost function favoring embeddings with small within-class
distances [1]; such methods must manage a tradeoff between
class discrimination and trustworthiness of the visualizations.
Another alternative is to make kernel versions of supervised
linear dimensionality methods (e.g. [8]); complicated kernels
can make the mappings hard to interpret, though.

We introduce a method, called Supervised Neighbor Re-
trieval Visualizer (SNeRV), that supervises the input-space
distance metric and then reduces the dimensionality. Our
method has two simple and unique properties. First, we de-
rive a local, topology-preserving Riemannian metric through
conditional density estimation [6]. Second, we apply the met-
ric to a recent visualization method, the Neighbor Retrieval
Visualizer (NeRV; [10]), with a unique justification: it opti-
mizes information retrieval performance of the visualization.

SNeRV is a supervised version of NeRV, which formal-
ized visualization as a form of information retrieval: similar
samples in the input space are retrieved based on similarity in
the output space (the visualization), and a good visualization
method must manage a tradeoff between precision and recall
of such retrieval. SNeRV inherits this interpretation. Under
certain parameter settings SNeRV can be seen as a new, super-
vised version of Stochastic Neighbor Embedding (SNE; [3]),
but more generally it manages a flexible tradeoff between pre-
cision and recall of the information retrieval. Moreover, un-
like some supervised methods [2, 4, 9], SNeRV can directly
embed unlabeled training points as well as labeled ones.

2. THE METHOD

We now present the Supervised Neighbor Retrieval Visualizer
(SNeRV). It computes input-space distances in a supervised
metric learned from the data, and then plugs them into the
embedding algorithm of unsupervised NeRV. The advantage
of this approach is that either step can be changed if desired.

2.1. Computing the Input-Space Distances

SNeRV computes input-space distances using learning met-
rics (see [6]). The learning metric is a Riemannian metric:
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it has a simple definition between close-by points, which is
extended through integrals to yield global distances.

In the learning metric, squared distance between two
close-by points x1 and x2 is defined as dL(x1,x2)

2 =
(x1 − x2)

T J(x1)(x1 − x2). Here J(x) is a Fisher informa-
tion matrix which represents local dependency of the condi-
tional class distribution on the input features, that is, J(x) =∑

c p(c|x)
(

∂
∂x

log p(c|x)
) (

∂
∂x

log p(c|x)
)T

where the c are
classes and the p(c|x) are conditional class probabilities at
point x. The local distances grow the fastest along directions
where class probabilities p(c|x) change the most. It can be
shown that for close-by points dL(x1,x2)

2 is equivalent to
the Kullback-Leibler divergence DKL(p(c|x1)||p(c|x2)).

The distance dL(x1,x2) between two far-away points x1

and x2 is defined in the standard fashion of Riemannian met-
rics: the distance is the minimal path integral over local dis-
tances, where the minimum is taken over all possible paths
connecting x1 and x2. In a Riemannian metric, the straight
path may not yield the minimum distance: intuitively, it can
be more efficient to walk around sticky mud than across it.

Learning metric distances dL are rigorous: they are non-
negative and symmetric, and satisfy the triangle inequality.
The distances (minimal path integrals) preserve the topology
of the input space: if the distance between two points is small,
there must be a path between them where distances are small.

Practical computation. To compute local distances
through the Fisher information matrices J(x), we estimate the
conditional probabilities p(c|x) by optimizing a discrimina-
tive mixture of labeled Gaussian densities for the data [6]: this

yields the estimate p̂(c|x) =
PK

k=1
βck exp(−||x−mk||

2/2σ2)
P

K
k=1

exp(−||x−mk||2/2σ2)

where the number of Gaussians K, the centroids mk, the
class probabilities βck and the Gaussian width σ (standard
deviation) are parameters of the estimate; we require that the
βck are nonnegative and that

∑
c βck = 1 for all k. The mk

and βck are optimized by a conjugate gradient algorithm to
maximize the conditional class likelihood, and K and σ are
chosen by internal cross-validation (see Section 3).

We next compute global distances as minimal path inte-
grals of local distances, using a graph based approximation
[6]. We connect all points in our graph: a connection between
two points denotes a straight path and the distance along it
is computed by piecewise approximation (see [6]; we use
T = 10 pieces). We could then find shortest paths between all
points by graph search (Floyd’s algorithm), and use the short-
est path distances as the learning metric distances. With N
points, graph search would take O(N3) time; note that similar
graph computation is needed in methods like Isomap. How-
ever, in experiments the straight paths yielded about equally
good results so we use them, which only takes O(N2) time.

2.2. Computing the Nonlinear Embedding

The nonlinear embedding in SNeRV is done by the same algo-
rithm as in unsupervised NeRV; that algorithm outperformed

many unsupervised methods in [10] and it has an information
retrieval interpretation as we will discuss. The algorithm tries
to make the neighborhood of each point in the visualization
be similar to the corresponding neighborhood in the original
input space. This is formalized in the cost function of SNeRV:

ESNeRV = λ
∑

i,j �=i

pij log
pij

qij
+(1−λ)

∑

i,j �=i

qij log
qij

pij
. (1)

The cost function (1) is a sum of two kinds of Kullback-
Leibler divergences, which measure the difference between
input-space neighborhoods and output-space neighborhoods.

Here the pij define the input-space neighborhoods; they
are normalized probabilities for points j being neighbors of
point i based on their input-space locations. That is, the prob-
abilities are computed based on learning metric distances in

the input space: pij =
exp(−dL(xi,xj)

2/σ2

i )
P

k �=i
exp(−dL(xi,xk)2/σ2

i
)
. Similarly,

the qij define the output-space neighborhoods; they are nor-
malized probabilities for points j being neighbors of point i
which are computed based on Euclidean distances in the out-

put space (the visualization): qij =
exp(−||yi−yj ||

2/σ2

i )
P

k �=i
exp(−||yi−yk||2/σ2

i
)
.

The smoothness parameter σi is chosen separately for each
point by fixing the entropy of the pij distribution to be the
same for each point, which corresponds to choosing a fixed
“effective number of neighbors”; see [10] for details. In the
experiments we chose the “effective number of neighbors” as
0.5 ·N/K where N is the number of data points and K is the
number of mixture components used to estimate the metric.

SNeRV minimizes ESNeRV with respect to the output co-
ordinates yi of each point, by a conjugate gradient algorithm;
see [10] for details. The time complexity of that algorithm is
O(N2) per gradient step (Venna et al., in preparation).

In ESNeRV , the parameter λ controls the tradeoff be-
tween two kinds of Kullback-Leibler divergences, which has
an information retrieval interpretation: it is shown in [10] that
unsupervised NeRV optimizes performance in an information
retrieval task where input-space neighbors of a point are re-
trieved based on its neighbors in the visualization. When
λ = 0 NeRV maximizes (smoothed) precision of the retrieval
task and when λ = 1 it maximizes (smoothed) recall; more
generally it optimizes a tradeoff between precision and recall.
Our supervised method SNeRV has the same interpretation,
where precision and recall are now computed with respect to
the supervised input-space metric. In experiments we use two
intermediate values for the tradeoff: λ = 0.1 and λ = 0.3.

When λ = 1, the unsupervised NeRV is equivalent to
Stochastic Neighbor Embedding (SNE; [3]); thus SNeRV
with λ = 1 can be seen as a supervised version of SNE.

3. EXPERIMENTS

We compare SNeRV to three recent supervised nonlinear
embedding methods: Multiple Relational Embedding (MRE;
[5]) was proposed as an extension of Stochastic Neighbor
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Embedding [3]. MRE minimizes a sum of mismatches be-
tween neighborhoods in the embedding and several input
neighborhoods: typically one input neighborhood is derived
from input-space coordinates and others from auxiliary in-
formation like labels. Colored Maximum Variance Unfolding
(MUHSIC; [9]) is a supervised extension of Maximum Vari-
ance Unfolding. Supervised Isomap (S-Isomap; [2]) is one of
several supervised extensions of Isomap; it uses a new defini-
tion of input-space distances where they grow faster between
different-class points than between same-class points.

We use the methods to find 2-dimensional visualizations
for four benchmark data sets. The Letter recognition and
Landsat satellite data sets (denoted Letter and Landsat) are
from the UCI Machine Learning Repository; Letter (D = 16
dimensions, C = 26 classes) contains images of different
capital letters and Landsat (D = 36, C = 6) contains satel-
lite images of different terrain types. The Phoneme data set
(D = 20, C = 13) is from the LVQ-PAK program package
and contains samples of different phonemes. The TIMIT data
set (D = 12, C = 41) is from a CD-ROM prototype version
of the DARPA TIMIT speech database; it is similar to the
Phoneme data. For all data sets we used a randomly chosen
subset of 1500 samples, to save computation time.

We compare supervised embedding methods; unsuper-
vised ones often cannot find class-discriminative embeddings.
Fig. 1 shows example embeddings by the supervised methods
and by the unsupervised NeRV (which outperformed several
unsupervised methods in [10]). The NeRV embedding has
much class overlap near the center and is clearly less infor-
mative about classes than SNeRV. See the references for other
comparisons of supervised and unsupervised embedding.

Methodology. We use a standard 10-fold cross-validation
setup: In each fold we reserve one of the subsets for testing
and use the rest of the data for training.

We evaluate the performance of the four methods by class
prediction accuracy of the resulting embeddings. We provide
test point locations during training but not their labels; after
the methods have made their embeddings, we classify the test
points by running a k-NN classifier (k = 5) on the embedded
data, and evaluate the classification error rates of the methods.

We use a standard internal 10-fold validation strategy to
choose all parameters in the methods which are not optimized
by their respective algorithms: each training set is subdivided
into 10 folds where 9/10 of data is used for learning and 1/10
for validation; we learn embeddings with the different param-
eter values; the values that yielded best classification accuracy
for the embedded validation points are then chosen and used
to compute the final embedding for the whole training data.

We ran two versions of SNeRV using λ = 0.1 and λ =
0.3. A simplified validation sufficed for the number K and
width σ of Gaussians: we did not need to run the embedding
step but picked the values that gave best conditional class like-
lihood for validation points in the input space. For S-Isomap
we validated its parameter α and its number of nearest neigh-

Table 1. Statistical significance of the difference between
the two best methods. The p-values are from a paired t-test
of 10-fold cross-validation results; when the result is statisti-
cally significant the winner is shown in bold. Numbers after
SNeRV denote values of the λ parameter.

Data set Best method Second best p-value
Letter SNeRV 0.1 S-Isomap 1.5 · 10−4

Phoneme S-Isomap SNeRV 0.3 0.54
Landsat SNeRV 0.3 S-Isomap 0.53
TIMIT SNeRV 0.1 MUHSIC 2.5 · 10−6

bors, and trained a generalized radial basis function network
to project new points, as suggested by the authors of [2]. For
MUHSIC we validated its regularization parameter ν, num-
ber of nearest neighbors, and number of eigenvectors in the
graph Laplacian, and we used linear interpolation to project
new points as suggested by the MUHSIC authors. For MRE
we validated its neighborhood smoothness parameter σMRE .

Results. The results are shown in the top left subfig-
ure of Fig. 1. We present the average error rate over the 10
folds and the standard deviation. The best two methods are
SNeRV and S-Isomap. On Letter and TIMIT data SNeRV is
clearly best; on Phoneme and Landsat SNeRV and S-Isomap
are about equally good. MRE is clearly worse than others,
whereas MUHSIC results depend on the data. For SNeRV,
both values λ = 0.1 and λ = 0.3 of the tradeoff parameter
yielded good embeddings. To test whether the best method on
each data set is statistically significantly better than the next
best one, we did a paired t-test across the 10 cross-validation
folds. For SNeRV we use the version (λ value) which gave
the better error rate in top left of Fig. 1. The results are shown
in Table 1: on Letter and TIMIT data, SNeRV is significantly
better than the other method; for the other two data the differ-
ence is not significant. All significant differences are in favor
of SNeRV.

Fig. 1 shows sample embeddings of the Letter data.
SNeRV shows distinct clusters of many classes. In S-Isomap
a few classes like “W” and “N” are well separated but there
is much overlap at center right. MUHSIC yielded severe
class overlap on this data. In MRE, classes are well sepa-
rated for training points, but test points are scattered loosely
around training points yielding bad classification accuracy.
Embedding by unsupervised NeRV is shown as a baseline; as
discussed before, it has clearly worse overlap than SNeRV.

4. CONCLUSIONS AND DISCUSSION

We introduced the Supervised Neighbor Retrieval Visualizer
(SNeRV), which uses class labels of points to learn a super-
vised nonlinear embedding of the data set. The key idea is that
we learn a topology-preserving, class-discriminative learning
metric, and distances in this metric are plugged into the em-
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Fig. 1. Top left: performances of the supervised nonlinear embedding methods in each data set. Results are average clas-
sification error rates over 10 cross-validation folds (smaller is better); standard deviations are shown with error bars. The
other subfigures show example embeddings of the Letter recognition data set by all supervised methods; an embedding by the
unsupervised NeRV is shown as a baseline. Overall, SNeRV yields the best embeddings.

bedding algorithm from [10]. In the benchmark experiments
SNeRV performed as well as or better than the best alterna-
tive method S-Isomap. Moreover, SNeRV allows immediate
embedding for unlabeled points as well.

Learning metric distances could be plugged into other em-
bedding algorithms that use a distance matrix; we made an
experiment with Sammon’s mapping in [6]; a similar idea for
Isomap appeared later in [11]. NeRV is a good choice for the
embedding step, though; it has an information retrieval inter-
pretation and led to good performance.
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