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ABSTRACT

As an alternative to standard PCA, matrix-based image di-

mensionality reduction methods have recently been proposed

and have gained attention due to reported computational ef-

ficiency and robust performance in classification. We unify

all of these methods through one concept: Separable Princi-

ple Component Analysis (SPCA). We show that the proposed

matrix methods are either equivalent to, special cases of, or

approximations to SPCA. We include performance compar-

isons of the methods on two face data sets and a handwritten

digit data set. The empirical results indicate that two exist-

ing methods, BD-PCA and its variant NGLRAM, are very

good, efficiently computable, approximate solutions to prac-

tical SPCA problems.

Index Terms— Image classification, eigenvalues and

eigenfunctions, discrete transforms, image representations,

face recognition.

1. INTRODUCTION

Principal component analysis (PCA) is an important feature

selection method used in many image detection/classification

schemes. One prominent example is its successful applica-

tion in face detection and classification, e.g. [1, 2]. How-

ever, estimation of the PCA projection from data has some

limitations. First, its computational complexity makes it diffi-

cult to deal directly with high dimensional data, e.g. images.

Second, the number of examples available for the estimation

of the PCA projection is typically much smaller that the am-

bient dimension of the data and this can lead to over fitting

of the projection. In an effort to alleviate these problems in

image classification applications, several variations on stan-

dard PCA have recently been proposed [3, 4, 5, 6, 7]. These

schemes are reported to have reduced computational burden

and, when coupled with appropriate classifiers, to yield im-

proved and robust classification rates [3, 4, 8, 5]. We seek

to better understand the relationship of these algorithms with

standard methods.

Our main contribution is the unification of these methods

through Separable PCA (SPCA). SPCA seeks a separable ba-

sis of images that maximizes the variance of the coordinates

over the ensemble of data images. We show that each of the

above schemes is either equivalent to, a special case of, or an

approximation to SPCA. Specifically, 2DPCA [3] is an easily

solvable special case of SPCA. BD-PCA [4] and NGLRAM

[7] project the image data onto a separable basis. We give pre-

cise conditions under which BD-PCA is a solution of SPCA

and when these conditions are not satisfied, show that BD-

PCA and NGLRAM give very good approximate solutions to

SPCA. Finally, GLRAM [5], a method for obtaining low rank

approximations, is equivalent to SPCA. Thus SPCA unifies a

variety of prior proposals in the literature.

2. BACKGROUND

Let X denote a linear space and Y denote a finite set of labels.

Given a set {(xk, yk) ∈ X × Y, k = 1, . . . , N} of training

examples (xi are instances, yi are labels), we want to design a

classifier h : X → Y that ‘best’ predicts the label of a new test

instance x ∈ X . For example, each training instance might

be an m × n grey scale face image with the associated label

being the identifier of the corresponding individual.

The PCA approach to this problem uses the training data

{xk}N
k=1 to determine a linear projection Q : X → R

d into a

lower dimensional space. Then the label information is used

to design a classifier h : R
d → Y . For example, this might be

a nearest neighbor classifier in the projected space.

It will be helpful to review PCA when X = R
s, some in-

teger s > 0. Without loss of generality, assume that the data

is centered, i.e.,
∑N

k=1 xk = 0. To select the PCA projec-

tion, form the data matrix D = [x1, x2, . . . , xN ]. The scatter

matrix (empirical covariance) is then DDT =
∑N

k=1 xkxT
k ∈

R
s×s. DDT has at most N − 1 nonzero eigenvalues. Let wj ,

j = 1, . . . , d, denote the first d eigenvectors ordered by eigen-

value, largest to smallest. The PCA projection into R
d results

by setting P = [w1, w2, . . . , wd] and x̂k = PT xk. In prac-

tice, one computes P from an SVD D = UΣV T , yielding

DDT = UΣ2UT and P = [u1, . . . , ud] where the uj are the

first d left singular vectors of D. For N � s, the complexity

of computing P is O(sN2) in time and O(sN ) in space.

When each data point is an m × n grey scale image Ak,

PCA finds an ON set {Wj}d
j=1 of d principal eigenimages of

the empirical covariance function of the image data [9]. Im-

age Ak is then projected to its coordinates with respect to this

ON basis, i.e., âkj = 〈Ak,Wj〉, j = 1, . . . , d, where 〈·, ·〉 is

the standard inner product. It is convenient to compute these

eigenimages by exploiting an isometry between R
m×n and
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R
mn. Let rT

i denote the ith row of A ∈ R
m×n. The bi-

jection ρ : R
m×n → R

mn that vectorizes A ∈ R
m×n row-

wise: ρ(A) =
(
rT
1 rT

2 . . . rT
m

)T
, preserves inner prod-

ucts and hence angles and Euclidean distances. Thus the PCA

decomposition can be computed using the vectorized data and

then converted back, by inverting ρ, to image space. With

N � mn, the time cost of this computation is O(mnN2) and

the space required is O(mnN ).

The time and space complexity of computing the trun-

cated SVD limits the number and size of training images.

Moreover, when the number of examples N is much smaller

than the data dimension, the computed PCA projection may

suffer from over-fitting (each basis Wj has mn unknowns

and is estimated from N examples). We are particularly con-

cerned here with the following proposals for addressing these

two issues for m × n grey scale image data.

In [3] the authors propose a PCA-based scheme, called

2DPCA, which computes an SVD R = QrΩQT
r of

R =
N∑

k=1

AT
k Ak =

N∑
k=1

m∑
i=1

rk
i rk

i

T
(1)

where rk
i

T
denotes the i-th row of Ak. R is the scatter matrix

of all rows over all training images. The first q columns of Qr

are used to form Vq ∈ R
n×q and the data are then projected

by right matrix multiplication:

Âk = AkVq (2)

Clearly, the same procedure can be applied to AT
k , k =

1, . . . , N . This computes the eigenvectors Qc of the scatter

matrix of all columns of the training images:

C =
N∑

k=1

AkAT
k =

N∑
k=1

m∑
j=1

ck
j ck

j

T
(3)

where ck
j denotes the j-th column of Ak. The p principal

eigenvectors are then used to form the projection matrix Up.

Combining both projections yields Bidirectional-PCA (BD-

PCA) [4, 6]. BD-PCA computes the m × q projection matrix

Vq as above and does the same for the transposed matrices

AT
i to yield an n × p projection matrix Up. Then the BD-

PCA projection of Ak is the p × q matrix:

Âk = UT
p AkVq (4)

Comparison of (2) and (4) indicates that 2DPCA is a special

case of BD-PCA with p = m and Up = Im.

BD-PCA is closely related to a third method, GLRAM

[5], for generalized low rank approximation of matrices.

In GLRAM one directly seeks the best low rank approx-

imations Bk to Ak using a common set of generators:

minBk,U,V

∑N
k=1 ‖Ak − UT BkV ‖2

F . The matrices Bk can

be thought of as low-rank projections of the data.

2DPCA, BD-PCA and GLRAM are of interest because of

reported computational efficiency and robust performance in

image classification [3, 4, 8, 5].

3. SEPARABLE PCA

The BD-PCA projection is obtained via a separable orthonor-

mal image transform [9], followed by selecting a subset of

the transform coefficients. To see this, let V = [Vq Ṽ ] where

the columns of V form an ON basis for R
n. Similarly, let

U = [Up Ũ ], where the columns of U form an ON basis for

R
m. Then the set Wi,j = uiv

T
j , i = 1, . . . , m, j = 1, . . . , n,

is a separable ON basis for R
m×n. The matrix of coefficients

of the expansion of A ∈ R
m×n in this basis is UT AV [9].

Clearly, the BD-PCA projection is an upper left hand sub-

block of this matrix, verifying our observation. There are

many possible separable transform projections of the above

form. Hence it is natural to ask what is the optimal (in the

PCA sense) projection onto a separable basis?

Recall that the image PCA projection to d dimensions

finds the d principal eigenimages of the empirical covariance

function and projects the example images onto these eigen-

images. This maximizes the total variance of the projected

coefficients. However, in general, the eigenimages are not

separable. Adding the requirement of separability places an

additional constraint on the projection and helps alleviate the

over fitting problem. In PCA one must estimate d, m × n
eigenimages. The extra requirement of separability means we

need only estimate p ON vectors in R
m and q ON vectors in

R
n with d = pq. The number of variables to estimate is thus

reduced from O(pqmn) to O(mp + nq).

3.1. The SPCA Problem

We hence pose the Separable PCA (SPCA) Problem:

max
U∈R

m×p

V ∈R
n×q

T (U, V ) =
p∑

i=1

q∑
j=1

N∑
k=1

〈Ak, uiv
T
j 〉2 (5)

subj. to : UT U = Ip & V T V = Iq (6)

Simple algebraic rearrangement of (5) yields two equivalent

expressions for the objective:

T (U, V ) = trace

(
V T

(
N∑

k=1

AT
k UUT Ak

)
V

)
(7)

= trace

(
UT

(
N∑

k=1

AkV V T AT
k

)
U

)
(8)

(U, V ) lies on the product of two Stiefel manifolds. The con-

tinuity of T and compactness of the product manifold ensure a

maximizing solution (U∗, V ∗) exists. (U∗, V ∗) is not unique

since (7) is also maximized by (U∗Q1, V
∗Q2) for orthogo-

nal Q1 ∈ R
p×p, Q2 ∈ R

q×q . At best, the range subspaces

U∗ = R(U∗) and V∗ = R(V ∗) may be unique.

We now use the above formulation to examine 2DPCA,

BD-PCA and GLRAM in greater detail.
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Theorem 1. Let U ∈ R
m×p and V ∈ R

n×q have ON
columns and U = R(U) and V = R(V ). Then

T (U, V ) ≤ min

⎧⎨
⎩

p∑
j=1

σj(C),
q∑

j=1

σj(R)

⎫⎬
⎭ (9)

with equality if either: the columns of U are the first p eigen-
vectors of C and for each k, AT

k U ⊆ V; or the columns of V
are the first q eigenvectors of R and for each k, AkV ⊆ U .

Proof. This follows by applying trace(AB) = trace(BA),
and standard upper bounds to the RHS of (7) and (8).

Note that the LHS of (9) depends on the data and p, q.

Hence if (U, V ) achieves equality in (9), then (U, V ) is a so-

lution of SPCA for the given p, q. Moreover, (9) suggests that

a good rule-of-thumb for adjusting p versus q, is to ensure the

two terms on the RHS are as close as possible.

3.1.1. Optimality of BD-PCA, 2DPCA and GLRAM

Corollary 1.1. Let Up = R(Up) and Vq = R(Vq). If for
each k, AkVq ⊆ Up or for each k, AT

k Up ⊆ Vq , then BD-
PCA solves SPCA.

Proof. The first requirement for equality in (9) is clearly sat-

isfied. The second is the assumption of the corollary.

The conditions of the Corollary are readily checkable:

compute Up and Vq; then for every example Ak and column

v of Vq , check if Akv is in the range Up, etc. This is trivial

to check if p = m (resp. q = n), since Um = R
m (resp.

Vn = R
n). Hence the following result.

Corollary 1.2. If p = m or q = n, BD-PCA solves SPCA.

2DPCA is obtained from BD-PCA by the restriction p =
m and Um = Im. Note that (Im, Vq) satisfies the conditions

of Theorem 1 for equality in (9). Thus 2DPCA solves a spe-

cial case of SPCA.

The objective of GLRAM [5] is to obtain U ∈ R
m×p,

V ∈ R
n×q and a set of low rank approximations Bk ∈ R

p×q

to minimize
∑

k ‖Ak−UBkV T ‖2
F . This reduces to solving a

problem of the SPCA form [5, Theorem 3.2]. Thus GLRAM

is equivalent to separable PCA. This connection to PCA re-

stricted to a separable basis is not explicitly identified in [5].

Moreover, [7] remarks on the desire to “build a close relation-

ship between classical PCA and GLRAM.” We believe SPCA

gives a very concrete connection.

3.2. Solving SPCA

In general, the solution of SPCA is nontrivial. One approach,

the GLRAM algorithm [5], iteratively uses (7) and (8) to

update the values of V and U until a local maximum of the

objective is attained. Starting from the BD-PCA solution

(Up, Vq) the algorithm can proceed via two paths: first update

U , then V and so on; or first update V , then U and so on.

A non iterative approximation method, NGLRAM [7], takes

one step along each path from (Up, Vq), and selects the result

with the greatest value of T . Clearly BD-PCA is faster than

NGLRAM which is faster than GLRAM. Correspondingly,

starting from (Up, Vq), TBD−PCA ≤ TNGLRAM ≤ TGLRAM .

4. EXPERIMENTS

We use the Handwritten Digits database (UCI repository) and

the YALE and ORL face databases to experimentally com-

pare the performance of PCA, SPCA (GLRAM), 2DPCA,

BD-PCA and NGLRAM. The Digit images (5,620 binary,

32 × 32 images of the digits 0 through 9) were used without

preprocessing. The YALE images (15 subjects, 11 images per

subject, 320× 243 image size) were first centered, histogram

normalized and resized to 60 × 50 pixels. The ORL images

(40 subjects, 10 images per subject, 112×92 image size) were

used without preprocessing.
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Fig. 1. Results.

We repeated each experiment 20 times with random selec-

tion of the training set (100 per digit for Digits, 6 per person

for YALE, 5 per person for ORL). We tested on the remain-

ing data and averaged the results of the 20 runs. For each
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method we use a Euclidean nearest-neighbor classifier. In

each experiment we record the training time, the root mean

square reconstruction error (RMSRE) [5] and the test image

misclassification rate. For SPCA and its special cases, except

2DPCA, we set p = q so the projected dimension is d = p2.

The results are plotted versus p. SPCA is computed using the

GLRAM algorithm (stoping criterion: ΔRMSRE < 10−6).

We tested random (GLRAM-RAN) and the BD-PCA solu-

tion (GLRAM-BD) as the initial condition. PCA is computed

using the same dimension as SPCA up to the maximum value

pPCA
max = 
√N − 1�. For 2DPCA we use projection dimen-

sions m×1,m×2, . . ., where m is the image height. We plot

2DPCA performance versus p =
√

m,
√

2m, . . .. The follow-

ing table summarizes key parameters. The examples are listed

in order of increasing value of mn/N .

Data Set m × n N mn/N pPCA
max

Digits 32 × 32 1000 1.028 31
Yale 60 × 50 90 33.3 9
ORL 112 × 92 200 206 14

Fig. 1 summarizes the main results. We begin with some

general observations. First, the GLRAM algorithm was ro-

bust to variations in initial conditions; the RMSRE values of

both training and test images disagreed among initial condi-

tions by at most 10−4. Hence only plots for SPCA computed

via GLRAM-BD are shown in the figure. Second, both BD-

PCA and NGLRAM provided very good, easy-to-compute,

approximate SPCA solutions. In each case, the approximate

solutions were almost indistinguishable from the GLRAM-

BD solution. Third, 2D-PCA was clearly majorized in both

reconstruction error and classification error by all other algo-

rithms. Hence we will not comment on it further. Now some

more specific observations. The SPCA projection computed

via BD-PCA was faster to compute and required less mem-

ory than PCA. For Digits, full dimensional training required

8.66±1.02 seconds for PCA and (1.1±0.072)×10−3 seconds

for BD-PCA. Similarly, for Yale: (9.0±0.13)×10−2 (PCA),

(3.7 ± 0.12) × 10−3 (BD-PCA); and for ORL: 1.1 ± 0.003
(PCA), (1.71 ± 0.03) × 10−2 (BD-PCA). The left column

plots show the reconstruction error for training and test im-

ages. As expected, SPCA was more resistant to over fitting.

This accords with previous reports [3, 4, 5, 6]. However, as

shown in the right column plots, the reduced over fitting of

SPCA did not improve classification performance over that of

PCA. To explore this further, we ran an experiment with only

one training image per class. Using YALE, the best test error

rates were: 0.30 ± 0.04 (PCA), 0.21 ± 0.03 (SPCA); a slight

improvement at the cost of requiring a higher projection di-

mension. But for ORL the results remained indistinguishable

(best test error: 0.14 ± 0.03 (PCA), 0.13 ± 0.02 (SPCA)).

5. CONCLUSION

SPCA unifies recently proposed matrix-based dimension re-

duction methods. We have shown empirically, that fast algo-

rithms such as BD-PCA and NGLRAM give very good ap-

proximate SPCA solutions and that the robustness to over fit-

ting of SPCA is an advantage in image approximation appli-

cations. Our results also suggested how to select the projec-

tion dimensions p and q, subject to other constraints, for best

results. For m ≈ n, the memory allocation is O(Nm2) for

PCA and O(m2) for BD-PCA; potentially orders of magni-

tude difference. Hence SPCA may be useful as a substitute

or precursor to PCA for high dimensional problems or in re-

source constrained applications. However, SPCA did not im-

prove classification performance over PCA in the examples

studied. This suggests that, at least for these data sets, the

nearest neighbor classifier is robust to the projection errors

caused by PCA over fitting. A major open question is whether

there are data sets in which SPCA does improve classification

performance. There are also several open technical questions

such as uniqueness of the SPCA solution and finding an effi-

cient computation method. We believe the SPCA framework

provides the context to address these questions.
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