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ABSTRACT 

 

Linear discriminant analysis (LDA) is designed to seek a linear 
transformation that projects a data set into a lower-dimensional 
feature space while retaining geometrical class separability. 
However, LDA cannot always guarantee better classification 
accuracy. One of the possible reasons lies in that its formulation is 
not directly associated with the classification error rate, so that it is 
not necessarily suited for the allocation rule governed by a given 
classifier, such as that employed in automatic speech recognition 
(ASR). In this paper, we extend the classical LDA by leveraging 
the relationship between the empirical classification error rate and 
the Mahalanobis distance for each respective class pair, and 
modify the original between-class scatter from a measure of the 
squared Euclidean distance to the pairwise empirical classification 
accuracy for each class pair, while preserving the lightweight 
solvability and taking no distributional assumption, just as what 
LDA does. Experimental results seem to demonstrate that our 
approach yields moderate improvements over LDA on the large 
vocabulary continuous speech recognition (LVCSR) task. 
 

Index Terms— Feature extraction, Pattern classification, 
Speech recognition 
 

1. INTRODUCTION 
 

There are two primary reasons why linear discriminant analysis 
(LDA) has been widely used in replace of (or in conjunction with) 
the conventional MFCC-based feature extraction method. First, to 
reduce the model complexity for lower time and space 
consumption, LDA can be used to project a higher-dimensional 
speech feature vector, usually formed by splicing several 
consecutive frames for capturing the contextual information of 
speech signals, into a lower-dimensional subspace with a minimal 
loss in discrimination. Second, it has a desirable characteristic – its 
derivation is succint and fast without requiring any iterative 
optimization techniques. 

The basic idea behind LDA is to find a transformation matrix 
that maximizes the ratio of the between-class scatter of a given 
data set, which represents the class separability in a geometrical 
sense [1], to the within-class scatter, which can be also taken as a 
constraint for metric scaling [2], in a projected feature space. As 
can be proved, LDA in a sense may be thought of as a procedure 
that maximizes the average squared Mahalanobis distance between 
each class-mean pair after dimensionality reduction, rather than as 
an ad hoc design for maximizing the classification accuracy, while 
assuming that all classes share the same within-class covariance. In 
other words, it implies that LDA does not directly relate itself to 
the classification error rate, the figure of merit that we are 
interested in most pattern classification tasks. More precisely 

speaking, in the C-class homoscedastic case, LDA can indeed 
extract statistically optimal features in the )1( −C -dimensional 
subspace for the Bayesian classifier [3], whereas in the p-
dimensional subspace )1( −< Cp , the so-called “overemphasis” 
problem, where the derivation of the LDA transformation is mostly 
dominated by well-separated class pairs, will arise and contrarily 
make the classification performace deteriorated [4]. 

To alleviate the aforementioned problem and retain the 
lightweight solvability simultaneously, a considerable amount of 
research effort has been devoted to integrating various kinds of 
weighting functions into the between-class scatter to adjust the 
contribution of each class pair made to the derivation of LDA. The 
weighting function can be determined on the basis of the 
theoretical pairwise Bayes error rate occurring between any two 
Gaussian-distributed classes (Loog’s method) [4], or the empirical 
classification error rate resulting from a given classifier (Lee’s 
method) [5]. Although Loog has skillfully converted the problem 
of maximum class separation to that of minimum Bayes errors, it 
still has its limitation that the allocation rules, governed by some 
complicated classifiers, such as that adopted in hidden Markov 
model (HMM) based automatic speech recognition (ASR), are not 
always set in a strict Bayesian sense. To get rid of the deficiency 
latent within Loog’s method, Lee incorporated the empirical 
classification information gathered from the training data into the 
derivation of LDA to make its objective function more classifier-
related. Nevertheless, in his approach, the contributions from the 
empirical classification error rates and the distances between class 
pairs cannot be traded off in an analytical way. 

In this paper, we first provide a practical investigation of the 
relationship between the empirical classification error rates and the 
Mahalanobis distances of the respective class pairs for ASR. 
Moreover, we propose a novel reformulation of LDA, called the 
approximate pairwise empirical accuracy criterion (aPEAC), 
which attempts to approximate the average empirical classification 
accuracy between each class pair, but not merely the geometrical 
class separation. It is worthwhile to highlight three key aspects of 
aPEAC here: 
1. The measurement of class separation used in aPEAC is a 

pairwise classification accuracy function. 
2. aPEAC can be well-conducted on some classification systems, 

which adopt not merely the Bayesian-based classifier but 
instead the other special or more complicated ones. Phrased 
another way, as a mediator between the front-end feature 
extractor and the back-end recognizer, it can mitigate their 
inconsistency or mismatch. 

3. Inheriting from LDA, aPEAC makes no distributional 
assumption and retains the computational simplicity 

A detailed account on the theoretical property of aPEAC will 
be given in the rest of this paper. 
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Figure 1: A dot plot of the empirical classification error rates 
versus the corresponding Mahalanobis distances of feature class-
mean pairs for the features of speech training data.

2. LDA AND RELATED WORK 
 

2.1. Classical LDA 
 

Let BS  and nn
W

×ℜ∈S , respectively, denote the between-class and 
within-class scatter matrices for a data set of C classes and are 
defined as follows [6]: 

( )( ) ,  ,
2
1

11, ==

=−−=
C

i

iiW

C

ji

T
jijijiB ppp SSmmmmS  (1) 

Here, ip , im , and iS  denote the prior probability, mean, and 
covariance matrix of class i, respectively. The goal of LDA is to 
seek a linear transformation pn×ℜ∈  that reduces the 
dimensionality of a given n-dimensional feature vector to p 

)( np <  by maximizing the following discrimination criterion [7]: 
( ) ( ) ( )( ),trace 1 SS BWLDAJ −=    (2) 

where the column vector i  of  can be solved as a generalized 
eigen-analysis problem iWiiB SS λ=  with i  being the 
eigenvector associated with the i-th largest eigenvalue iλ  of BW SS 1− . 

There are two notes that need be mentioned here. First, the 
optimization of LDA can also be viewed as a two-stage procedure 
[5]. The first stage conducts a whitening transformation 21−

WS on the 
feature vectors, and the second stage involves a principal 
component analysis (PCA) on the whitened class means. In the 
whitened space, the within-class scatter matrix turns out to be an 
identity matrix, and all discrimination information resides only in 
the following whitened between-class scatter matrix: 
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where iWi mSm 21−= . Then it can be proved that the matrix , 
which is made up of the eigenvectors corresponding to the p largest 
eigenvalues of BS , maximizes the new criterion )trace( SB

T . 
Finally by combining these two stages, the matrix S 21−

W  can be 
shown to maximize the original LDA criterion in (2). 

Second, from a geometrical viewpoint, what LDA attempts to 
maximize can be interpreted as the average squared Euclidean 
distance between each whitened class-mean pair in the transformed 
subspace, since it can be proved that 
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2.2. Weighting-based LDA 
 

As mentioned in Section 1, LDA is not always optimal for a C-
class classification task due to the “overemphasis” problem. One of 
the possible solutions is to modify the LDA criterion in the 
whitened space by replacing BS  with the following weighted form: 
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where ),( jiw  is a weighting factor used to control the contribution 
of a class pair ),( ji made to the derivation of LDA. 

Apparently, if the value of ),( jiw  is invariant to any 
nonsingular transformation, e.g., 21−

WS , then analogous to LDA, the 
transformation matrix pn×ℜ∈′  of the weighted LDA can be 
easily derived by S ′− 21

W , where ′  is constituted by the 
eigenvectors corresponding to the p largest eigenvalues of BS′ . 

In Loog’s method [4], based on the minimization of the 
theoretical pairwise Bayes error rate occurring between any two 
Gaussian-distributed classes i and j, ),( jiw  is defined by  
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where )erf(⋅  denotes the error function that is twice the integral of 
the Gaussian distribution with zero-mean and variance of 1/2. It 
can be shown that, for a given pair of classes i and j, ijΔ  represents 
their Mahalanobis distance in the original space, or the Euclidean 
distance in the whitened space, i.e., jiij mm −=Δ . Also, ( )jiw ,  
in (6) in essence is a monotonically decreasing function of ijΔ  
such that those class pairs with large ijΔ  will not be 
overemphasized. Furthermore, with this weighting function, the 
new criterion, named as approximate pairwise accuracy criterion 
(aPAC), can approximate the average theoretical accuracy among 
all class pairs. 

Yet another modification (Lee’s method) [5], advocating the 
concept of pairwise class confusion information, takes account of 
the practical classification error rates resulting from a given 
classifier, rather than operating merely in the Bayesian sense (cf. 
(6)). The corresponding weighting factor is expressed as a function 
of the pairwise confusion information ijCI : 

( ) ( ) 1,0  ,1, ≤≤×−+= ααα ijCIjiw
 

  (7) 
where ijCI  represents the empirical classification error rate for a 
sample item that belongs to class i but is misclassified to class j, 
and α  denotes an adjustable factor trading off between the 
empirical classification error rates and the class-mean distances, 
which can only be set heuristically. 
 

3. THE PROPOSED APPROACH 
 

Inspired by the work mentioned above, we attempt to introduce a 
new weighting factor such that the distance information and 
confusion information are more tightly coupled. Moreover, we 
expect that the whole new criterion can approximate the average 
empirical classification accuracy among all class pairs. 
 

3.1. Observations 
 

First, we define the empirical pairwise classification error rate as 
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where in  denote the number of sample items of class i, and ije  
denotes the number of sample items that originally belong to class i 
but are misallocated to class j by the ASR. ijER , in a sense, can be 
used to measure the confusability between any class pair i and j. 
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Figure 2: Plots of the polynomial regressions of various degrees 
based on the data points in Figure 1. 

That is, for class i, the higher the value of ijER , the more 
confusable it would be with class j.  

Figure 1 shows a dot plot of the empirical pairwise (phone) 
classification error rates (cf. Eq. (8)), which are obtained through 
the use of the LDA-transformed speech features on the speech 
recognition task, versus the corresponding Mahalanobis distances 
of class-mean pairs, which are measured in the original feature 
space. Refer to Figure 1, we can roughly characterize the 
relationship between these two variables: class pairs with shorter 
distances (e.g. 4<Δ ij ) tend to have higher error rates (e.g. 

01.0>ijER ); similarly, class pairs with larger distances (e.g. 
4>Δ ij ) are likely to have lower error rates (e.g. 01.0<ijER ). 

Therefore, such a phenomenon, to some extent, not only gives us 
researchers, who stand behind the “veil of ignorance” with respect 
to the back-end classification results, some tractable clues for 
prediction, but also confirms our expectation: the statistics 
contributed by the class pairs with shorter distances need to be 
emphasized, while those of the class pairs with larger distances 
should be deemphasized instead when deriving the LDA  matrix. 
 

3.2. The proposed criterion (aPEAC) 
 

To appropriately model the phenomenon revealed in Figure 1, we 
use the data-fitting (or regression) scheme to find out a function 
taking the Mahalanobis distance as the input, i.e., )E( ijΔ , which 
hopefully can approximate the relationship between the empirical 
pairwise classification error rate and the corresponding 
Mahalanobis distance. Data fitting is a mathematical optimization 
method which, when given a series of data points ),( ii vu  with 

ni ,...,1= , attempts to find a function )( iuG  whose output iv~  
closely approximates iv . That is, it minimizes the sum of the 
squared error (or the squares of the ordinate differences) between 
the points )~,( ii vu  and their corresponding points ),( ii vu  in the 
data set. 

In our work, for example, if )E( ijΔ  is supposed to be a 
quadratic polynomial, i.e., cba ijijij +Δ+Δ=Δ 2)E( , then given all 
of the data points ),( ijij ERΔ  shown in Figure 1, we can estimate 
the coefficients of )E( ijΔ , a, b, and c, by minimizing the sum of 
the squares of ))(E( ijij ER−Δ  shown below:  
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The derived error function )(Ê ijΔ , as graphed in Figure 2 for 
polynomials of degrees 1 up to 5, can be used to predict the 
pairwise classification error rate, and to approximate the empirical 
accuracy for any class pair i and j, defined by )(Ê1)(Â ijij Δ−=Δ . 
This will lead to a new weighting function designed by 
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which is obviously invariant to the whitening transformation 21−
WS . 

To see how reasonable our proposed weighting function is, we can 
first simply substitute the right-hand part in (10) into (5) to form 
the approximate pairwise empirical accuracy criterion (aPEAC) in 
the whitened space. As can be seen from the following derivation, 
what aPEAC tries to do is maximizing the average pairewise 
empirical error rate in the transformed subspace with a specific 
dimensionality, as opposed to LDA that tries to maximize the 
weighted sum of the squared Euclidean distance in the whitened 
space. 
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Besides, the role that the weighting function plays is not merely to 
control the contribution of each class pair, but to endow such a 
criterion with more preferable notions for classification problems. 
As illustrated in Figure 3, which shows a geometrical comparison 
between LDA and aPEAC, the subspace (the projecting direction, 
the dashed line) generated by LDA is dominated by the class pairs 
(e.g. classes 1 and 3) with large Mahalanobis distance  in the 
original space. However, in aPEAC, the subspace is instead 
dominated by the class pairs (e.g. classes 1 and 2) with large 
empirical classification accuracy in the tranformed space instead. 
 

4. EXPERIMENTS AND RESULTS 
 

4.1. Experimental setup 
 

The speech corpus for LVCSR consists of about 200 hours of 
MATBN Mandarin television news [8]. All the 200 hours of 
speech data are equipped with corresponding orthographic 
transcripts, in which about 25 hours of speech data were used to 
bootstrap the acoustic training. Another set of 1.5 hour speech data 
of were reserved for testing. On the other hand, the acoustic 
models chosen here for speech recognition are 112 right-context-
dependent INITIAL's and 38 context-independent FINAL's. The 

Figure 3: Geometrical interpretation of aPEAC. 
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)(Â 13Δ

1803



Methods without MLLT with MLLT 
LDA 31.44 28.95 

aPEAC (3rd degree) 30.59 27.80 
Loog’s (Eq. (6)) 30.39 28.51 

Lee’s (Eq. (8),  = 0.5) 30.76 28.17 
HLDA 44.56 28.38 

Table 2. Comparison among the CER results (%) of aPEAC and 
various LDA-based approaches. 

Polynomial Regressions without MLLT with MLLT
Linear (1st degree) 30.62 28.37 

Quadratic (2nd degree) 30.40 28.15 
Cubic (3rd degree) 30.59 27.80 

4th degree 30.69 28.57 
5th degree 30.47 28.03 

Table 1. The CER results (%) of aPEAC, with respect to various 
degrees of polynomials. 

acoustic models were trained using the Expectation-Maximization 
(EM) algorithm. 

The recognition lexicon consists of 72K words. The language 
models used in this paper consist of unigram, bigram and trigram 
models, which were estimated using a text corpus consisting of 170 
million Chinese characters collected from Central News Agency 
(CNA). The N-gram language models were trained using the SRI 
Language Modeling Toolkit (SRILM). 

The baseline system with the Mel-frequency cepstral 
coefficient (MFCC) features resulted in a character error rate (CER) 
of 32.16 %. 
 

4.2. Experimental results 
 

The feature extraction was performed using LDA, aPEAC, and 
other methods on speech feature vectors consisting of 162 
dimensions, which were first spliced by every 9 consecutive 18-
dimensional Mel-filterbank feature vectors and then reduced to 39 
dimensions. The states of each HMM were taken as the unit for 
class assignment, and a well-trained HMM-based recognition 
system was performed to obtain the class alignment of the training 
utterances. During the speech recognition process we kept track of 
full state alignment for obtaining the state-level transcriptions of 
the training data; by comparison with the correct ones, we thus 
derived the empirical pairwise classification error rates with (8). 

Table 1 shows the results for aPEAC with polynomial 
regressions of various degrees, which are derived from the training 
data and its preliminary recognition results. The experiments on 
speech recognition were further performed in conjunction with a 
heteroscedastic decorrelation, namely the maximum likelihood 
linear transform (MLLT) [9], which is used for obtaining a 
projection maximizing the likelihood of the projected data under a 
diagonal-covariance assumption. As the 3th degree polynomial 
regression is being used, aPEAC yields the lowest CER, which has 
relative improvements of about 14 % over the system with MFCC 
baseline and about 4 % over LDA. The possible reasons why 
aPEAC did not significantly outperform LDA can be conjectured 
as follows: 
1. In Figure 1, with the same limitation as polynomial regression, 

there are still many outliers, which lie far apart from the 
regression curves, especially in the vertical direction, and 
aPEAC cannot deal with them well. Practically speaking, other 
irregular or insignificant factors, which might affect the 
generations of the polynomial regressions, need to be expelled. 

2. We can observe from Figure 2 that the variations of those 
polynomials are very slight when 3>Δ ij . But in Figure 1, there 
are still many class pairs with 3>Δ ij  but also with higher ijER  
that might be deemphasized by the proposed weighting 
functions. 

We then compare aPEAC with the two variants of LDA 
mentioned in Section 2.2, as those expressed in (6) and (7), 
respectively. If we look into the results summarized in Table 2 (the 

right-most column), we can observe that they also provide 
moderate improvements over LDA, which, however, seem slightly 
inferior to that achieved by aPEAC (3rd degree) for the LVCSR 
task studied here. Moreover, we also try to compare aPEAC with 
HLDA (heteroscedastic linear discriminant analysis) [10], one of 
the widely-used feature transformation approaches in ASR, which 
is usually derived on a maximum likelihood basis while relaxing 
the equal-covariance assumption of LDA. As can be seen from the 
last row of Table 2, the improvement of HLDA is less pronounced 
than aPEAC (3rd degree). 
 

5. CONCLUSIONS  
 

In this paper, we have proposed a new LDA-based criterion called 
aPEAC to generalize LDA by modulating the contribution of each 
class pair on between-class scatter through the use of a pairwise 
classification error function. aPEAC has successfully converted the 
original LDA criterion of distance maximization to that of 
empirical error rate minimization. 

As part of our future work, we are going to make an in-depth 
comparison with other well-known but more complicated methods, 
such as fMPE [11]. Furthermore, not only will a combination of 
both theoretical and empirical parts of the classification accuracy 
be considered, but also the within-class scatter matrix will be 
reestimated on the basis of our proposed approach. 
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