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ABSTRACT 
 
A fast subspace analysis and feature extraction algorithm is 
proposed which is based on fast Haar transform and integral 
vector. In rapid object detection and conventional binary 
subspace learning, Haar-like functions have been frequently 
used but true Haar functions are seldom employed. In this 
paper we have shown that true Haar functions can be 
successfully used to accelerate subspace analysis and 
feature extraction. Both the training and testing speed of the 
proposed method is higher than conventional algorithms. 
Experimental results on face database demonstrated its 
effectiveness. 
 

Index Terms—  Feature extraction, subspace analysis, 
fast Haar transform, integral vector. 
 

1. INTRODUCTION 
 
In many subspace analysis algorithms [1][2][3][4][5] 
[9][10], the basis vectors can be obtained by solving a 
standard or generalized eigenvalue decomposition problem. 
The solutions of many other subspace analysis algorithms 
have to be solved by iterative manner since their objection 
functions are not convex.  

Given a basis vector Nu  obtained by one of the 
above algorithms and a high-dimensional vector Nx , 
the corresponding feature y  is computed by direct 
inner-product Ty u x . This inner-product involves N  
floating-point multiplications and 1N  floating-point 
additions. Usually N  is very large and thus the computation 
of the direct inner product is computational intensive. In 
most applications, feature extraction is only one of the steps 
to perform a computer vision or data mining task and many 
other steps have to compete with the feature extraction step 
for the limited computational resources. Therefore, it is 
desirable to reduce the computational cost of the feature 
extraction process.  
 

 
To extract features with less computational cost, we 

propose in this paper an effective feature extraction 
algorithm which we call FHT-PCA. Not only the feature 
extraction process (the process of obtaining y ) but also the 
training process are very fast. This characteristic makes the 
proposed method applicable to lots of cases where 
subspace-based feature extraction is involved. The 
advantages of the FHT-PCA comes from our introducing 
fast Haar transform (FHT) [6] into feature extraction and 
subspace learning.  

A related work is B-PCA [7]. In B-PCA, Haar-like 
functions in stead of true Haar functions are selected from a 
very large dictionary. The selection process is too low to be 
applied for mid-size images let alone large-size images.   
 

2. FAST HAAR TRANSFORM 
 
The proposed algorithm is fast because fast Haar transform 
(FHT) [6] and integral vector are used.  

The basis functions of the Haar transform a complete set 
of orthonormal rectangle basis functions which exhibit the 
unique characteristic of having both global and local 
function properties (see Fig. 1). In Fig. 1,  ( )j

ih n  explicitly 
reflects the scale and position of the function by specifying 
i and j   

 
Fig. 1.  The first 8 Haar basis functions.  
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Given a signal [ (0) (1) ( 1)] Nx x x Nx , the Haar 
transform is given by  

1

0
( ) ( ) ( , ),         0,..., 1

N

n

y k x n h k n k N  .            (1) 

The outcome of the Haar transform is 
[ (0) (1) ( 1)]y y y Ny  where ( )y k  is the coefficient of 

x  associated to the Haar function ( , )h k n . 
What is used in the proposed algorithm is fast Haar 

transform (FHT) [6]. The FHT needs only 2 ( 1)N  
addition operations to get y  while the ordinary Haar 
transform requires N N  floating point multiplications and 

( 1)N N  addition operations. Most importantly, the FHT 
neither needs to construct the Haar functions nor store them. 
If an image of size 128 128 is vectorized to a long vector, 
the storage size of the corresponding Haar functions is 
1GByte for the ordinary Haar transform. By contrast, FHT 
needs only to allocate memory for the signal and an 
intermediate vector whose size is identical to that of the 
signal.  
 
3. FAST FEATURE EXTRACTION BASED ON FHT 

 
3.1. Fast Projection onto a Given Basis Vector 
 
Assume a basis vector Nu  is given by some subspace 
learning algorithm such as PCA or LDA. The signal in the 
original high-dimensional data space is Nx . The 
traditional process of extracting the feature y  of x  
corresponding to u  is to compute y  by the following inner 
product operation: 

1

0

NT
i ii

y u xu x .                                   (2)  

This requires N  floating point multiplications and 1N  
floating point additions. We propose to reduce the 
computational cost by utilizing Haar transform and integral 
vector.  

The Haar functions described in Section 2 can be 
expressed as vectors in N . So in this section we will 
denote the Haar function ( , )h i n  by the vector N

iv  with 
0,..., 1i N . The general form of iv  (illustrated in Fig. 2) 

is  

0
ij

a l j m

v a m j r

elsewise

,                                            (3) 

where ijv  is the j th entry of iv  and a  is the magnitude of 

the Haar function. l , m , and r  specify the locations of 
discontinuity of the Haar function. The Haar transform of u  
is  

,    0,..., 1T
i ic i Nv u .                               (4) 

By discarding the small-valued coefficients and reserving 
the largest K  coefficients, u  can be approximated by 

1 1

0 1 1
1 1

,     ,   
N K

i i i i K
i i

c c c c c K Nu v u v .   (5) 

The condition  K N  is important for compact 
representation and for our fast feature extraction algorithm. 

 
Fig. 2. The bottom row shows the general form of a Haar function v  while 
the top row is a basis vector u . The length of v  and u  are both 1N . 

In the following part we will show how one can use (5) 
to fasten feature extraction. Substituting (5) into (2) yields 

1

0

K
T T T

i i
i

y cx u x u x v                  (6) 

Because of the many constant and zero entries in iv  (see 

Fig. 2), the item T
ix v  in (6) is potentially very fast to 

compute. Equation (7) indicates that T
ix v  can be calculated 

by using many addition operations and one multiplication 
operations: 

1

m r
T

i i i
i l i m

a x xx v                          (7) 

To reduce the number of additions in (7), we define the 
integral vector ( , )it ix  as  

0
( , )

i

j
j

it i xx .                                         (8) 

It then follows 

( , ) ( , 1)
m

i
i l

x it m it lx x                       (9) 

and similarly 

1
( , ) ( , )

r

i
i m

x it r it mx x .                         (10) 

So (7) can be formulated by integral vector as 

1

m r
T

i i i
i l i m

a x xx v                                                    

( , ) ( , 1) ( , ) ( , )a it m it l it r it mx x x x . (11) 

From (11) one can find that the inner product of x  and iv  
can be obtained by 3 additions and 1 multiplication. 
Substitute (11) into (6), one get  

1

0

K
T

i i
i

y c x v                                                                    

  
1

0
( , ) ( , 1) ( , ) ( , )

K

i i
i

c a it m it l it r it mx x x x . (1
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2) 
Equation (12) tells that extracting a feature requires 
3 ( 1) 4 1K K K  additions and 2 K  
multiplications. By contrast, traditional method that 
computes the projection by element-wise inner product (i.e. 
(2)) needs 1N  additions and N  multiplications. Take a 
typical configuration 50K  and 128 128N  for 
example, the proposed method needs 199 addition 
operations and 100 multiplication operations, while 
traditional method needs 16,383 additions and 16384 
multiplications. If d  features to be extracted, the 
computational cost ratio s  of the traditional method against 
our method is 

1

( 1)

( 1) 4 1 2
d

i i
i

d N m N p
s

N p K p K m
,   (13) 

where p  and m  are the numbers of machine cycles 
occupied by performing an addition operation and a 
multiplication operation respectively, iK  is the number of 
the Haar functions used to approximate the i th basis vector 

iu . In the denominator of (13), the item ( 1)N p  stands 
for the computational cost of computing the integral vector 

( , )it x . The integral vector is computed once and the result 
can be used for extracting all the K  features. The efficiency 
of computing the integral vector results from the following 
iterative formula:  

0( ,0)
( , ) ( , 1) ,     1,..., 1i

it x
it i it i x i N

x
x x

.           (14) 

Throughout the paper, it is assumed that multiplication 
operation spends much more time than addition operation, 
i.e. m p . This is almost always true for micro controller 
unit (MCU). Even though m p , it also holds that the 
denominator of (13) is smaller than the nominator (i.e. 1s ) 
as long as iK  is small, which implies the computational 
superiority of our algorithm over the traditional method.  

Now the question is how to determine iK . Instead of 
assigning a fixed value for iK , we propose to increase the 
value of iK  from 1 to the value so that the angle 

( , )angle u u  between u  and u   

180ˆ( , )
|| || || ||

T

angle
u uu u

u u
                   (15) 

is just equal to or less than a pre-defined threshold  such 
as 30  degree. The meaning of u  and u  is the same as that 
in (5).  
 
3.2. Subspace Learning 
 

In the above subsection, it is assumed that the basis vector 
u  is given beforehand. In this subsection, we describe how 
to obtain the basis vectors. 

Let 1 2[ ]MX x x x  be the M  training samples with 
N

ix . We adopt the framework in [7] to iteratively 
compute the d  basis vectors 1[ ]dU u u . Each basis 
vector is obtained by applying a subspace learning 
algorithm on the reconstruction error matrix and outputting 
the most important basis vector u  and finally 
approximating u  with the K  Haar functions as stated in 
last subsection. In the experimental section, we choose PCA 
as the subspace learning algorithm.  

Before iteration, the reconstruction error matrix E  is 
initialized to be the training matrix X . At the beginning of 
t th iteration, 1t  basis vectors 1 1[ ]tU u u  are 
available, the reconstruction error matrix is then updated by 

1T T

E X X

X U U U U X
.                                      (16) 

The second row of (16) is the reconstruction formula for 
non-orthogonal basis vectors.  

Because we use FHT to compute the coefficients of 
Haar functions and then approximate the corresponding 
basis vector with the largest K  Haar functions, the whole 
training process is very faster than that of B-PCA [7]. 
 

4. EXPERIMENTAL RESULTS 
 

We conducted experiments on the ORL database. For 
training, we randomly selected 5 images per subject, and 
used the remaining images for testing.  
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Fig. 3.  The average reconstruction error.  

The proposed method FHT-PCA is PCA-based. Because 
PCA is optimal in the sense of minimum reconstruction 
error, we how how the average reconstruction error e   

1

1 || ||M

i ii
e

M
x x                            (17) 

varies with respect to the number of basis vectors used. The 
results of FHT-PCA and PCA are shown in Fig. 3. As can 
be seen, as  decreases the FHT-PCA approaches PCA. 
But if  is too small, the number of Haar functions will be 
very large and the computation cost will increase. In the 
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following experiments, we will choose 30  as a good 
trade-off. Fig. 4 shows that the angle  (see eq. (15)) 
between u  and u  decreases quickly w.r.t. the number of 
selected Haar functions. 
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Fig. 4.  The angle  between u  and û  decreases quickly w.r.t. the 
number of selected Haar functions. 

Then we examine the recognition performance of the 
FHT-PCA. Fig. 5 shows the recognition results. It is 
observed from Fig. 5 that the recognition performance of 
FHT-PCA approaches that of PCA very well. This implies 
that the recognition performance is degenerated little by 
approximating the basis vector with small number of Haar 
functions.  

0 5 10 15 20

10

20

30

40

50

60

70

80

90

feature number

av
er

ag
e 

re
co

gn
iti

on
 ra

te
 (%

)

PCA
FHT−PCA (θ=30)

 
Fig. 5.  Recognition rates of FHT-PCA and PCA 

 
Fig 3 and Fig. 5 have shown that both the representation 

capacity and recognition accuracy of the FTH-PCA are 
comparable with PCA. But these properties of the FHT-
PCA are meaningful only if its computational cost is more 
economical than that of PCA. The computational cost ratio 
of PCA against FHT-PCA is shown in Fig. 6. Fig. 6 shows 
that the computational cost of PCA is several times larger 
than that of FHT-PCA.  
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Fig. 6.  The computational cost ratio of PCA against FHT-PCA. 
 
These experimental results have given evidences that 

FHT-PCA is much faster than PCA without significant 
decreasing the representation and recognition performance. 
 

5. CONCLUSIONS 
 
We introduced an effective subspace analysis and feature 
extraction algorithm based on fast Haar transform and 
integral vector. In face detection and recognition, Haar-like 
functions have been frequently used but true Haar functions 
are seldom employed. In this paper we have shown that true 
Haar functions can be successfully used to accelerate 
subspace analysis and feature extraction. Owing to high-
speed of fast Haar transform, the proposed algorithm is very 
fast for training. By utilizing integral vector, it is also very 
fast for extracting features. 
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