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ABSTRACT

In this paper we present a method for extracting a speech signal of
target speaker from noisy convolutive mixtures of target speech and
an interference source, when training utterances of the target speaker
are available. We incorporate a statistical latent variable model into
blind source separation (BSS), where we make use of spectral bases
learned from the training utterances of the target speaker to iden-
tify which source corresponds to the target speaker. Combined with
any existing BSS methods, our post-processing (which is the main
contribution) consists of two steps: (1) channel selection where we
identify the source corresponding to the target speaker; (2) enhance-
ment where we further suppress the remaining interference. Numer-
ical experiments confirm that our method substantially improves the
separation quality of existing BSS methods and successfully restores
the target speaker’s speech.

Index Terms— Blind source separation, speech extraction,
speech segregation

1. INTRODUCTION

The extraction of a target speaker’s speech from noisy mixtures in
real-world environment is a challenging problem. Such a task in-
volves convolutive blind source separation (BSS) as well as denois-
ing to remove background noise. For instance, an automatic speech
recognition or a voice command system requires the enhanced target
speaker’s speech in the presence of noise and interfering sound, in
order to improve the recognition performance. BSS can be directly
applied to solve this problem [13, 14, 18, 1, 5]. However, due to in-
herent ambiguities in BSS (ordering and scale ambiguities), it is not
possible to identify which is a signal of interest even after mixtures
are separated out. In practice, the effect of interference source often
remains up to some extent after BSS is applied, although a perfect
separation is expected theoretically. The performance of blind tech-
nique (which does not resort to any prior knowledge or side informa-
tion) is limited in practice. In the case where some side information
is available, it is desirable to incorporate such information into BSS
to improve the final performance.

There are a few work on the target source extraction [16, 12]. In
[12], the problem of target source extraction was considered for the
case where interference is babble noise. BSS was applied to sepa-
rate mixtures out, followed by a kurtosis-based selection was used to
choose the target source. In [16], the target source was assumed to
have dominant power. The selection of target source was formulated
as a permutation problem, where the power dominance was used to
select the target source.

Compared to these existing methods, our method directly makes
use of the characteristics of target speaker’s speech. We assume that
a target speaker’s training utterances are available, which are not
necessarily overlapped with speech signals that are supposed to be

separated out. From the training utterances, we learn spectral bases
by nonnegative matrix factorization (NMF) of spectrograms or a sta-
tistical latent variable model. The main contribution of this paper is
in the post-processing of BSS where we use spectral bases learned by
a statistical latent variable model in order to identify the source cor-
responding to the target and to enhance the target speech in the pres-
ence of background noise. There exist some post-processing meth-
ods for pursuing the same goal but with different approaches [20, 9].
Our post-processing consists of two steps: (1) channel selection step
where we identify the source corresponding to the target speaker; (2)
enhancement step where we further suppress the remaining interfer-
ence. These steps are carried out, making use of learned spectral
bases. We show that our method substantially improves the separa-
tion quality of existing BSS methods and successfully restores the
target speaker’s speech.

2. PROBLEM FORMULATION

We consider a noisy environment where an interference source (e.g.,
noise from a printer or music sound from a radio) is convolved with
a target speech and a background noise also exists, as shown in Fig.
1. Measurement signals picked up by microphones are assumed to
be generated by

xt =
P∑

τ=0

Aτst−τ + nt, (1)

where xt = [x1,t, ..., xm,t]
� ∈ R

m is an m-dimensional observa-
tion vector at time t, st = [s1,t, ..., sn,t]

� ∈ R
n is an n-dimensional

source vector, {Aτ} is a set of multivariate FIR filter coefficients
which models multipath propagation in a room, P is the filter length,
and nt is the background noise (which is typically assumed to be
white Gaussian noise).

In this paper we particulary consider the case where a target
speaker’s speech is convolved with an interference source (m =
n = 2), in the presence of background noise. The task of target
speech extraction is to restore the source corresponding to the target
speech from mixtures measured at microphones, in the presence of
noise, while methods of BSS restore all independent sources from
mixtures, without knowing which source corresponds to the target
speech. Therefore, the target speech extraction requires some side
information to identify the source corresponding to the target speech.
The power dominance of the target source can be used to select the
target source from sources restored by BSS, as in [20]. Such prior
knowledge is often not satisfied in practice. In this paper, we accom-
plish the target speech extraction, through learning spectral charac-
teristics by a statistical latent variable model from training utterances
of target speaker. The schematic diagram of our proposed method is
shown in Fig. 1, where the role of each module is briefly described
in figure caption.
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Fig. 1. The schematic diagram of our proposed method for target
speech extraction is shown: (a) learning spectral bases given training
utterances described in Sec. 3; (b) convolutive BSS to restore inde-
pendent sources from convolutive mixtures, where we used methods
exploiting nonstationarity [13, 14, 6]; (c) channel selection takes two
outputs y1 and y2 (outputs of BSS) as inputs to identify the source
corresponding to the target speaker, yielding an estimate of target
speech, ŷ, described in Sec. 4.1; (d) enhancement where we sup-
press the interference and noise remaining in ŷ, yielding the final
estimate ŝ of target speech, described in Sec. 4.2.

3. LEARNING SPECTRAL BASES

We denote by M ∈ R
F×T a spectrogram where each row is as-

sociated with a frequency profile which reflects how the power of a
spectral component (out of F frequency bins) varies across T time
frames, i.e., Mij represents the power of spectral component i in
time frame j. Learning spectral bases from the spectrogram M in-
volves the following matrix decomposition,

M ≈ UV , (2)

whereU ∈ R
F×K is the basis matrix containing spectral bases in its

columns, V ∈ R
K×T is the associated encoding matrix, andK cor-

responds to the intrinsic dimension (the number of latent variables).
The decomposition (2) is solved by determining factor matrices U

and V which minimizes a discrepancy measure between the dataM

and the model UV .
Nonnegative matrix factorization (NMF) [10] is an appropriate

technique to learn the decomposition (2) since the spectrogram is a
nonnegative matrix and nonnegativity constraints imposed on factor
matrices U and V yield a fruitful representation. NMF was suc-
cessfully applied to learn spectral bases from audio for sound clas-
sification [4] Spectral bases learned from EEG data were shown to
be useful in extracting discriminative features for EEG classification
[11]. NMF is closely related to probabilistic latent semantic analysis
(PLSA) [8] where a statistical latent variable model, known as aspect
model, is learned by EM optimization [7]. The aspect model was re-
cently extended, relating the generalization to probabilistic matrix
tri-factorization [21].

A speaker-specific latent variable was introduced on the top of
the aspect model, in order to tackle a problem of single channel
speaker separation [15]. The model in [15] treated the spectrogram
M as dyadic data, where the (i, j)-entry of the spectrogram was
interpreted as the count of frequency i in time frame j. It was also
further elaborated with an overcomplete representation [17], incor-
porating the entropic prior [2]. We also adopt the probabilistic model
in [15, 17] to learn spectral bases.

4. POST-PROCESSINGWITH SPECTRAL BASES

We provide a detailed description of our post-processing method in-
volving channel selection and enhancement, each of which is ex-
plained in Sec. 4.1 and Sec. 4.2, respectively. The core ingredient in
our post-processing method is spectral bases U learned from train-
ing utterances of target speaker. We denote by M̂

(1)
∈ R

F×T̂ and
M̂

(2)
∈ R

F×T̂ the spectrograms of y1 and y2 that are sources re-
covered by a BSS method, respectively.

4.1. Channel Selection

Channel selection aims at identifying the source corresponding to
the target speaker, given sources restored by a BSS algorithm. To
this end, we first apply the probabilistic decomposition method [15]
to spectrogramsM

(1) andM
(2).

The tth column of a spectrogram is interpreted as the histogram
of an independent set of draws from an underlying multinomial dis-
tribution Pt(f) over F discrete values. With an appropriate nor-
malization, we can relate columm t of the spectrogram to Pt(f).
Let s ∈ {s∗, s�} be a latent variable indicating target speaker (s∗)
or interference source (s�). We denote by z ∈ {zs} be a latent
variable (specific to source s) which manipulating the generation of
frequency f . Then, Pt(f) is decomposed as [15]

Pt(f) =
∑

s∈{s∗,s�}

Pt(s)
∑

z∈zs

Pt(z|s)Ps(f |z), (3)

where Pt(s) indicates a priori probability of s-th source, Pt(z|s) is
a mixing weight varying to time and Ps(f |z) is a basis function. In
eq. (3), we use the learned bases in Sec. 3 as the basis function for
s∗, i.e., Ps∗(f |z) = [U ]f,z , where [U ]f,z is an (f,z) element of U ,
where z is treated as an index. Thus the parameters to be estimated
here are θ = {Pt(s), Pt(z|s), Ps�(f |z)}. They are efficiently esti-
mated by an expectation and maximization (EM), where the E-step
estimates the posterior Pt(s, z|f) while M-step updates the parame-
ters θ [15]:

• E-step

Pt(s, z|f) =
Pt(s)Pt(z|s)Ps(f |z)∑

s′ Pt(s′)
∑

z′∈zs
Pt(z′|s′)Ps′(f |z′)

,

• M-step

Pt(s) =

∑
z∈zs

∑
f Pt(s, z|f)[M̂ ]f,t∑

s′

∑
z∈zs

∑
f Pt(s, z|f)[M̂ ]f,t

,

Pt(z|s) =

∑
f Pt(s, z|f)[M̂ ]f,t∑

z′∈zs

∑
t Pt(s, z′|f)[M̂ ]f,t

,

Ps�(f |z) =

∑
t Pt(s

�, z|f)[M̂ ]f,t∑
f ′

∑
t Pt(s�, z|f ′)[M̂ ]f ′,t

.
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We apply the above EM method to M̂ (1) and M̂ (2) in order to
obtain θ̂(1) and θ̂(2) respectively, where θ̂(i) means the parameters
estimated from M̂ (i). After the decompositions of M̂ (1) and M̂ (2),
the priori probability of the target speaker s∗ is averaged over the
time frames as

P̂
(i)(s∗) =

1

T̂

T̂∑
t=1

P
(i)
t (s∗). (4)

and used as the measure for the channel selection. Intuitively we can
conclude that the larger P̂ (s∗) in (4), the higher contribution of the
target speech to the spectrogram. When P̂ (1)(s∗) and P̂ (2)(s∗) are
calculated, the criterion of channel selection is presented by

{
M̂ , θ̂

}
=

⎧⎨
⎩

{
M̂

(1)
, θ̂(1)

}
if P̂ (1)(s∗) ≥ P̂ (2)(s∗),{

M̂
(2)

, θ̂(2)
}

otherwise.
(5)

4.2. Enhancement

We recover the spectrogram for the target speaker based on
{

M̂ , θ̂
}

and the learned spectral bases (Ps∗(f |z) = [U ]f,z). The clean mag-
nitude of the spectrogram [M̂

∗
]f,t for the target speaker is estimated

by a mean value of binomial distribution B
(
[M̂ ]f,t, Pt(s

∗|f)
)

[15]:

[M̂
∗
]f,t =

P̂t(s
∗)P̂t(f |s

∗)∑
s′ P̂t(s′)P̂t(f |s′)

[M̂ ]f,t, (6)

where P̂t(f |s
∗) =

∑
z∈zs∗

P̂t(z|s
∗)Ps∗(f |z). Only the learned

bases and corresponding encodings are used to reconstruct the tar-
get speech. After this step, the remaining interference source and
background noise are automatically suppressed.

Speech signal is obtained by using inverse short time Fourier
transform with overlapping windows. The phase information of the
mixture is used to tune the phase of the reconstructed signal.

5. NUMERICAL EXPERIMENTS

We investigate a performance of our method applied to the target
speaker’s speech extraction problem in the noisy reverberation en-
vironment. Speech signal for the target speaker (male or female)
is convolutively mixed with the interference source in noisy envi-
ronment. The interference source is set to printer noise or trumpet
music sound. All signal is resampled at 8000 Hz. In order to learn
the spectral bases, we use 30 seconds of the training utterances from
each speaker. The spectrogram of the training utterances is gener-
ated by the short-term Fourier transformation with widow size 1024,
hop size of 256 between frames and a hannig window. The settings
for the latent variable model are as follows: the number of the latent
variables is set to K = 1000; parameters for the entropic prior are
set to the values in [17].

In the extraction experiments, 5 seconds of the test speech sig-
nal and of the interference source are convolutively mixed in noisy
environment. Roomsim [3] is used to generate the convolutive mix-
tures of the sources. The size of room is set to 6.25 m (width) by
3.75 m (depth) by 2.5 m (height). The 1/4 width and 1/2 depth point
of the room is served as a reference point. The interference source
is located 2 m away from the reference point. The location of the

target source is 1) 1 m, 2) 2 m, and 3) 3 m away from the refer-
ence point, each represents target dominant case (d1), approximately
equal case (eq), and interference dominant case (d2) respectively.
The inner angle of the target source and the interference source is 30
degree. The overall settings are illustrated in Fig. 2(a). The result-
ing room impulse response are displayed in Fig. 2(b), which shows
that the length of the mixing filters are 1123 in 8000 Hz environ-
ment. White Gaussian background noise is added to the obtained
convolutive mixture.

(a) Room (b) Simulated room impulse response
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Fig. 2. Simulation settings in Roomsim.

A source to distortion ratio (SDR) [19] is used to investigate
the quality of the separation results in noisy environment. The SDR
is a measure representing the ratio between target source part and
unwanted signal part in the estimated signal. We used BSS EVAL
toolbox [19] to decompose given signal to the target source part and
other signal part. The table 1 shows the SDRs in both cases of the
female and the male speaker. We evaluate SDRs at each step of
the experiments (see Fig. 1): SDRx for the value of SDR of the
mixture, where SDRx = max(SDRx1, SDRx2); SDRŷ for the
value of SDR of the output from the channel selection; SDRŝ for
the value of SDR of the estimated target speaker’ speech from the
enhancement. Note that, BSS without our postprocessing can not
give SDRs superior to SDRŷ . From the SDR values of the estimated
target speech, SDRŝ, of all experiments, we found that our method
substantially improves the separation quality of BSS.

Table 1. The SDR values at each step (refer Fig. 1). Pr and tr
indicate the interference sources, pr (printer noise) and tr (trumpet
music sound) while eq, d1 and d2 mean the dominance of the target
speaker respect with to the interference source (see Fig. 2(a)).

SDRx SDRŷ SDRŝ

female male female male female male
pr-eq 0.53 -1.59 12.55 1.08 16.76 5.68
pr-d1 3.39 1.09 5.08 2.17 17.50 6.85
pr-d2 -1.38 -3.16 9.14 0.85 13.80 4.08
tr-eq 0.36 -1.13 3.89 -3.14 16.66 2.87
tr-d1 2.83 1.18 10.30 1.73 18.39 7.77
tr-d2 -1.93 -3.32 -0.94 -3.81 6.78 2.85
average 0.63 -1.16 6.67 -0.19 14.98 5.02
increase - - 6.04 0.97 8.31 5.20
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6. CONCLUSIONS

We have presented a method of extracting target speech from con-
volved mixtures with interference sound or noise, whereas general
BSS aimed at restoring every sources from their mixtures. A sta-
tistical latent variable model was learned to capture the character-
istics of target speech, given training utterances of target speech
(side information) that were not necessarily overlapped with speech
in consideration when BSS was applied. Spectral bases learned by
the overcomplete aspect model with sparse prior led us to identify
which restored source corresponds to target speech and to suppress
remaining interference as well. The main contribution of this pa-
per was in the post-processing of BSS, consisting of two steps: (1)
channel selection where we identified the source corresponding to
the target speaker; (2) target speech enhancement where we further
suppressed the remaining interference. Numerical experiments in
real-world noisy environment confirmed that our post-processing in-
deed much improved the performance, restoring much more clean
target speech, compared to the one determined by the conventional
BSS which still suffered from remaining interference and noise. Our
post-processing works well only when the spectral profiles of target
speech differ from those of an interference. In the case where one
male (or female) speaker is associated with target speech and the
other male (female) speaker corresponds to interference, the perfor-
mance of our post-processing is degraded, since spectral profiles of
male speakers’ speech are similar each other. This difficult case is a
challenging problem that we are currently working on.
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