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ABSTRACT 
 
Robustness is an essential issue to computer vision and 
pattern recognition in developing multimedia applications. 
In this work, we present a robust kernel approach that is 
highly robust against random noises and intra-class 
deformations. By incorporating the robust error function 
used in robust statistics together with a deformation-
invariant distance measure, the derived robust kernel is 
shown to be insensitive to the influence of outliers and 
robust to intra-class deformations. In the experiments, we 
justify our robust kernel with different kernel machines with 
applications to handwritten digit recognition and data 
visualization on the USPS database. 
 

Index Terms—Robust kernel, robust classification, 
digit recognition, data visualization 
 

1. INTRODUCTION 
 
In many machine learning applications, most of the learning 
algorithms are guaranteed to learn the optimal classifier if 
the amount of data is infinite. However, in real situations, it 
is impractical to gather infinite samples covering all data 
variations. Taking the example of handwritten digit 
recognition, it needs to present all possible variations of a 
category in the prototype set, which includes all possible 
positions, sizes, angles, skews, writing styles, thickness of 
digits. In addition, the acquired data is often corrupted by 
outliers or noise, which also distracts the learning method 
from learning correct information. Thereby, many methods 
have been proposed to enhance the robustness of the 
existing learning algorithms against irrelevant data 
transformation. Some made use of an invariant distance 
measure constructed in such a way that the distance between 
a prototype and a pattern is not affected by the irrelevant 
transformation. For example, Huttenlocher [1] et al. 
developed a method based on Hausdorff distance to robustly 
computing similarities between images. Some made efforts 
for data representations by designing feature extractors that 
are minimally infected by the irrelevant transformation, 
such as those using SIFT descriptor for object recognition 
[2].  
Numerous approaches were proposed recently to improve 
the robustness of learning algorithms based on the kernel 
methods. For example, Lu et al. [4] proposed to detect and 

remove outliers by kernelizing Principal Component 
Analysis (KPCA). Liao and Lai [6] presented a hybrid 
robust kernel with a mixture of a -function and an RBF 
kernel to relieve noise effects for the learning algorithms. 
There, kernel trick hinges on a suitable representation of the 
patterns and a similarity measure. In this paper, we tailor a 
robust kernel for image applications. We introduce a new 
kernel for the kernel methods by integrating the robust error 
function together with a transformation invariant distance 
measure. The proposed kernel can be used in formulating 
the nonlinear variants of linear algorithms (e.g. SVM, PCA) 
that can be cast in terms of dot products, and thus enhance 
their robustness. In the experiments, by incorporating with 
support vector machines (SVM) and linear discriminant 
analysis (LDA), the derived kernel demonstrated the 
superior robustness to the conventional kernels in resisting 
noise corruption and image deformation.  
The rest of this paper is organized as follows. In section 2, 
we present a brief review of kernels. Subsequently, section 
3 provides a detailed description of the proposed robust 
kernel. In section 4, the robustness of the proposed kernel is 
justified by some computer vision applications. Finally, 
discussions and remarks are presented in section 5. 
 

2. REVIEW OF KERNELS 
 
The limited power of linear learning machines has been 
pointed out in [3]. To make target functions better-
represented by the given attributes, one can change the data 
representations via a set of mapping functions. The data 
representation can be changed via a set of mapping 
functions : 
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A kernel function k is employed as inner products of images 
under a transformation  of two data points x and x' in F:  
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A function k is a kernel if and only if it is symmetric and the 
associated kernel matrix (i.e. the Gram matrix) formed by 
subsets of input space X are non-negative; Mercer’s 
theorem gives the conditions for k to be a kernel. Different 
choices of k determine the type of learning machines that is 
constructed, where conventional choices include polynomial 
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kernel ( ) ( )pT ck += yxyx, , sigmoid kernel ( ) ( )( )θκ −= yxyx Tk tanh, , 
and RBF kernel ( ) ( )22exp, σyxyx −−=k . By embedding 

kernels into the linear learning machines, many successful 
frameworks in various applications have been developed. 
 

3. THE PROPOSED ROBUST KERNEL 
 
This paper is focused on establishing a new robust kernel 
for image-related applications. It concurrently uses a robust 

-function as well as the notion of tangent planes to map 
data to another feature space. In the mapped space, it is 
insensitive to pattern deformation and noise influence is 
suppressed. In the following, we detail the proposed robust 
kernel. 
Given a dataset X, a kernel can be defined with a function f 
on X using a metric d, and the Gram matrix K is given by 
Kij := f(d(xi,xj)). For example, the RBF kernel is given by 

( ) ( )22exp, σyxyx −−=k  , where  is a kernel parameter 
and the associated metric is the Euclidean distance. 
However, one drawback of using the squared error function 
is known to lack of robustness in the presence of outliers. 
As shown in Figure 1(a), the squared error measure used in 
the RBF kernel grows quadratically, thus it can be strongly 
influenced by a small number of outlier components. 
Researchers in robust statistics have proposed to employ 
different -functions to replace the squared error function, 
thus alleviating the influence of outliers. Figure 1(b) 
illustrates the Geman-McClure -function [7], where the 
influence of outlier data points is reduced by setting the 
error of an outlier component saturated.  

We integrate the notion of tangent distance [5] into the 
Geman-McClure error function in our kernel design so 
make it concurrently robust to geometric deformation. 
Suppose there are r different types of transformation in X, 
such as translation and rotation. In a sense, we can align two 
patterns (say, x and y) via finding the shortest distance 
between two tangent planes corresponding to x and y. The 
first-order Taylor expansion is used to approximate r 
deformation at a pattern x': 
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where Mi(x', i) represents the image described by 'x with i-
th type of transformation parameterized by i, and 
Mi(x',0)=x'. Let T=[t1 t2 … tr] be a r-by-d matrix containing 
the r tangent vectors for x'. In this manner, the surface of r 
possible transformation of a pattern is approximated by its 
tangent plane at the pattern. Thus, the problem is reduced 
from computing the similarity measure between two 
patterns to finding the shortest distance between two tangent 
planes. We illustrate the idea of tangent distance in Fig. 2. 
By embedding the two-sided tangent distance [5] into the 
residual error part of the -function, our robust kernel is 
defined as follows:  

( )( )( , ) 1 , ;TK ρ σ= −x y r x y ,           (4) 

where 
( ) ˆ ˆ,T x x y y= + − −r x y x T y T            (5) 

Fig. 1: (a) The squared 
error function (b) the 
Geman-McClure error 
function with different . 

(a) 

Fig. 3: Some example 
images of noise-corrupted 
digits in USPS database for 
Salt & Pepper noise, 
Gaussian noise and speckle 
noise. 

Fig. 2: Illustration of the 5 example tangent vectors. (a) The 
corresponding pixel displacements shown in vector field, (b) 
visualization of 5 tangent vectors, and normalized to 0-255 for 
representation, and (c)&(d) give the transformation results. 
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with xˆ  and yˆ  obtained by minimizing the distance 

x x y y+ − −x T y T , and  
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Here, x and y denote two data vectors, n is the vector 
dimension, and Tx and Ty denote the tangent spaces 
corresponding to x and y respectively.  is the kernel 
parameter. Note that the above -function we applied here is 
the Geman and McClure function. 
 

4. EXPERIMENTAL RESULTS 
 
4.1. Hand-Written Digits Recognition 

 
In the experiment, we apply the proposed robust kernel for 
handwritten digit recognition. The USPS hand-written digits 
database [8] was applied here and three types of noises are 
simulated for evaluating the robustness of the proposed 
kernel. The applied types of noise are additive Gaussian 
noise, additive salt and pepper noise, and the multiplicative 
speckle noise. Some examples of the corrupted digits 
images are shown in Figure 3. In the experiment, we assume 
five digit transformation (i.e. r=5) to describe the pattern 
deformation, which are rotation, scaling, and skewing the 
digits on the directions of x-axis, diagonal direction, and the 
largest principal component from the training data. These 
five transformations are depicted in Figure 2. Here, we 
choose SVM as the kernelized linear machine for its 
reported good generalization ability. 
For computational efficiency, in the experiments we 
randomly chose 1000 samples for SVM training and 
randomly pick another 100 samples for testing using our 
proposed kernel. The recognition accuracy was obtained by 
averaging 11 repetitions. The performance of several 
frequently-used kernels is evaluated as well for comparison. 
In Figure 4, Robust denotes that SVM incorporates with our 
robust kernel, linear indicates SVM is with linear kernel 

)(),( yxyx •=k , poly d stands for the polynomial kernel with 
degree d, sigmoid for the sigmoid kernel, and RBF is the 
RBF kernel. From the figure, we see the digit recognition 

accuracy is degraded by different degrees when the 
traditional kernels are used with SVM. On the contrary, 
when SVM is used with the proposed robust kernel, the 
classification accuracy becomes stable, and noise corruption 
only has little effect in the recognition results. Also, we 
notice that, even in a noise-free condition, the proposed 
robust kernel still performs slightly better than those general 
kernels. These results demonstrate the superiority of the 
proposed kernel by means of robustness against noise over 
several frequently-used kernels. 
 
4.2. Data Visualization 
 
Solving classification problems typically involves analyzing 
a large amount of high-dimensional data. However, the high 
dimensionality of data often complicates the problem, and 
leads to the curse of dimensionality. From the view point of 
data representation, discovering the compact representation 
of high dimensional data often helps in many fields. Several 
data dimensionality reduction frameworks are proposed 
such as PCA, LDA, and those finding the low-dimensional 
embeddings such as Multidimensional Scaling (MDS) and 
Locally Linear Embedding (LLE). However, errors caused 
by outliers are often inevitable when discovering the 
nonlinear data relations in a high dimensional space. To 
investigate the potential of our proposed kernel, here, we 
apply it to kernelize LDA (KLDA) for better data 
representation in low dimension.  
The set of hand-written digits in Figure 5 is visualized by 
the procedures: First, with respect to each digit type, we 
used KLDA to seek a binary Fisher-Discriminant in the 
mapped space by one-against-others approach. Each hand-
written digit image can be represented as a ten-dimensional 
vector by concatenating ten projections. Next, we apply 
MDS to reduce the dimensionality from ten to two for 
visualizing these vectors. 
In the experiments, 1000 randomly-selected samples from 
USPS database are used for visualization. We compared our 
method with different data dimensionality reduction 
methods of MDS, LDA, LLE, Supervised LLE (SLLE), and 
their combinations. As shown in Figure 5, we see the data 

        (a)                                          (b)                                                          (c) 

Fig. 4:  Comparison of other methods using USPS handwritten digit dataset (a) Salt & Pepper noise (b) Speckle noise, and (c) 
Gaussian noise with various noise density and variance  

1787



instances after applying our method are nicely distributed 
according to their categories. From the perspective of data 
dimensionality reduction (reduced from 16x16 to 2), the 
method applying our robust kernel has shown outstanding 
capability for clearly separating digits according to their 
categories. From the perspective of data visualization, our 
method clearly reveals the relationship of digits category by 
category. On the contrary, for other methods the exhibition 
is not satisfactory. We further added different types of 
noises to the dataset to verify the robustness of the proposed 
method. The results are shown in Figure 5(i-l). With the 
capability to robustly measure data similarity, our algorithm 
retains consistency against noise disturbance. The proposed 
robust kernel method thus provides good capability in 
understanding the intrinsic data structures even under a 
severe noisy condition. Compared to the traditional methods 
the experiments confirmed the superior performance of the 
robust kernel in data visualization application. 
 

5. CONCLUSIONS 
 
In this paper, we presented a novel robust kernel that 
integrates a robust error function and a transformation 
invariant distance measure, thus making the kernel-based 
classifier or the dimension-reduction method highly robust 
against noise and irrelevant data transformation. In the 
experiments, the robustness is justified on applications in 
pattern recognition and data visualization under various 

noise disturbances. In the future, we plan to investigate the 
efficiency of our robust kernel on other applications, such as 
face recognition with occlusions and image-denoising by 
kernelized PCA. 
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Fig. 5: Data dimensionality reduction results by 1000 handwritten digit images. (a-g) Results of different methods, where 
MA(d1)+MB(d2) denotes data dimensionality is reduced to d1 by Method A then to d2 by Method B (h) our method (i-l) under various 
degree of noise effects 

      (e) SLLE      ( f) LLE(10)+MDS(2)           (g) SLLE(10)+MDS(2)                  (h) KLDA(10)+MDS(2) 

     (i) Salt&Pepper, density=0.1         ( j) Salt&Pepper, density=0.2        (k) Speckle, variance=0.1              (l) Speckle, variance=0.2 

      (a) MDS               ( b) LDA          (c) LDA(10)+MDS(2)              (d) LLE
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