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ABSTRACT

This paper presents a multi-view articulated human motion

tracking framework using particle filter with manifold learn-

ing through Gaussian process latent variable model. The di-

mensionality of the input image observation and joint angles

are reduced using Gaussian process models to improve the

tracking efficiency. The forward and backward mappings be-

tween the two low dimensional spaces are then obtained us-

ing relevance vector machine and Batesian mixture of experts

(BME). Improved sampling schemes and auto-initialization

are obtained using BME. Without using a 3D body model, ef-

fective likelihood evaluation is obtained through RVM using

images from multiple views. Tracking results obtained using

real videos with complex dance movement show the efficacy

of the proposed approach.

Index Terms— articulated movement tracking, Gaussian

process latent variable model, particle filtering

1. INTRODUCTION

Vision-based articulated motion tracking is a challenging

problem for computer vision. Existing 3D movement track-

ing algorithms can be roughly classified into two cate-

gories, namely, generative-based and discriminative-based

approaches. Generative-based approaches use an articulated

3D model for tracking. The model is projected onto an

image plane and an error function is computed to indicate

the quality of the match. Recently, nonlinear probabilistic

generative models, such as Gaussian process latent variable

model (GPLVM) [1] have been used to obtain a probabilistic

low-dimensional representation of body joint data, which can

reduce the tracking complexity. In addition, as variants of

GPLVM, Gaussian process dynamical models (GPDM) [2, 3]

have proved powerful to capture the underlying dynamics of

movement and meanwhile with reducing the dimensionality

of the pose space. Such models have been successfully used

as priors for kinematic tracking of walking [3]. Multi-view

based approaches are common for generative-based 3D body

trackers to reduce ambiguity. For example, visual hulls is

often extracted to reconstruct the body shape, based on which

the articulated body pose can be recovered [4, 5, 6].

Discriminative-based approaches infer body poses di-

rectly from training data, using machine learning techniques,

including relevance vector machine [7], nearest-neighbor [8],

and local linear embedding [9]. In these methods, the kernel

principal component analysis (PCA) [10] and probabilistic

PCA [8] are commonly used to reduce the dimensionality

of the image and pose spaces. To tackle the one-to-many

mapping problem from image to pose, expert-based learning

has been used [11, 12]. The basic idea is to split the input

image space into a nested set of regions and the data map-

ping that falls in these regions is approximated. Multiple

views have also been exploit in discriminative-based methods

[13, 14, 15].

Recently, we have developed a monocular 3D human

motion tracking system by integrating the generative and

discriminative-based approaches using manifold learning and

Gaussian process in a particle filtering framework [16]. This

system explores the underlying dynamics of the movement

modeled by GPDM as the prior information. It maps the

image observation to low dimension by GPLVM. This also

reduces noises caused by image segmentation or different

appearance of the input image. This generates the small num-

ber of the parameters and particles for tracking and provide

quicker performance and higher accuracy. The mapping from

silhouette to kinematics is utilized to better draw particles

according to the most recent observation and provide ini-

tialization. The system is view-independent so that it can

determine both body kinematics such as joint angles and

torso orientation given input from any views. Ambiguity is

overcome by mapping multi-model using Bayesian mixture

of expert. For the likelihood calculation, the system is able to

conduct fast computation without need to generate synthetic

images in tracking for particle weight evaluation.

It is clear from existing research that using multiple views

can effectively reduce tracking ambiguity. In this paper, we

present a multi-view tracking framework by extending our

previous monocular tracking approach to improve tracking
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Fig. 1. An overview of the proposed framework, (a): training

phase; (b): tracking phase.

accuracy and reduce ambiguity. Effective fusion methods of

images from multiple views are developed. Our experimen-

tal results obtained using both synthetic and real video data

demonstrate that in addition to the fact that using multiple

views can reduce tracking ambiguity and improve tracking

accuracy, complex movement such as dance movement can

also be tracked reliably using the proposed multi-view track-

ing approach.

2. PROPOSED MULTI-VIEW TRACKING
APPROACH

An overview of the architecture of the proposed system is pre-

sented in Figure 1.

2.1. System Training
The training phase in the multi-view framework is identical to

that in the monocular framework [16], since camera geometry

is not required in system training. Similar to [16], the training

consists of training data preparation and model learning. In

data preparation, synthetic images are rendered using anima-

tion software, e.g. Maya, and motion capture data. The learn-

ing part has five major components. First, key frames are se-

lected from the synthetic images using multidimensional scal-

ing [17] and k-means. Based on these key frames, an input

silhouette can be vectorized using its distances to all the key

frames [16]. Then GPLVM is used to construct the low di-

mensional manifold S of the image silhouettes from multiple

views using their vectorized descriptors. The third compo-

nent is the dimension reduction of pose data with modeling

of motion dynamic priors. GPDM is used to obtain the man-

ifold Θ of full body pose angles. This latent space is then

augmented by the torso orientation space Ψ to form the com-
plete pose latent space C ≡ (Θ,Ψ). The forward and back-

ward nonlinear mappings between C to S are constructed in

the learning phase. The forward mapping is established from

C to S using RVM, which will be used to efficiently evaluate

sample weights in the tracking phase. The multimodal (one-

to-many) backward mapping from S to C is obtained using

BME. This backward mapping from the silhouette manifold

S to the joint space of the pose manifold and the torso ori-

entation C is needed to conduct both autonomous tracking

initialization and sampling from the most recent observation.

More details on system training can be found in [16].
2.2. Tracking From Multiple Views
In tracking, weighted movement particles in C are propagated

based on the image observation from multiple views up to the

current time instant and learned movement dynamic models.

In our discussion on multi-view tracking, we assume that we

have n cameras installed around the circle with known rela-

tive looking directions. The tracking procedure using multi-

ple view goes as follows. Body silhouettes are first extracted

from input images and then vectorized. Given the input sil-

houettes from each view at t, latent points of the silhouettes

st = {si}n
i=1 can be found in the silhouette manifold S us-

ing the learned GPLVM. Then BME is invoked to find a few

plausible pose estimates in C for each si. BME results using

multiple views are then integrated to reduce the set of can-

didate solutions. The integrated solution can also be used to

initialize the tracking in the first frame. In the tracking mode,

movement samples are drawn according to both the BME

outputs and movement dynamics represented by the learned

GPDM. The sample weights are evaluated according to the

distance between the observed and predicted silhouettes. The

empirical posterior distribution of poses is then obtained as

the weighted samples.

To be specific, a particle filter defined over C is used for

3D movement tracking. The state parameter at time t is ct =
(θt, ψt), where θt is the latent point of the body joint angles,

and ψt is the torso orientation. Given a sequence of latent sil-

houette points s1:t obtained from input images using GPLVM,

the posterior distribution of the state is approximated by a set

of weighted samples {w(i)
t , c

(i)
t }M

i=1. The importance weights

of the particles are propagated over time

w
(i)
t ∝ w

(i)
t−1

p(st|c(i)
t )p(c(i)

t |c(i)
t−1)

q(c(i)
t |c(i)

t−1, st)
(1)

Particles are propagated over time from a proposal distribu-

tion q. To take into account both the movement dynamics and
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the most recent observation st, the proposed approach selects

q from the following mixture of two distributions

q(ct|ct−1, st) = πqb(ct|st) + (1 − π)p(ct|ct−1) (2)

where qb(ct|st) is chosen as the integrated BME outputs from

different views. The second term in (2) is from movement

dynamics learned using GPDM and a first-order AR model

for the torso orientation

p(ct|ct−1) = p(θt|θt−1)p(ψt|ψt−1) (3)

In (2), π is the mixture coefficient of the BME-based pre-

diction and the dynamics-based prediction components. The

experiment for the proposed approach uses π = 0.5. Be-

cause C is only a 5D space, only 100 particles are drawn from

the proposal distribution, which greatly saves the computa-

tion cost. In the following, we present our method to ingrate

the BME outputs from different views and the computation of

joint likelihood using multi-view image features.

2.2.1. Integration of BME Outputs

The BME output from one view is a mixture of Gaussian

p(c|si) =
∑K

k=1 αi,kN (μi,k,Σi,k), i = 1, · · · , n. μi,k =
(θi,k, ψi,k) is the mean of the kth mixture component of the

BME output from the ith view, where θi,k is latent point of

the pose in pose manifold and ψi,k the torso orientation based

on the ith view. To properly integrate BME outputs from mul-

tiple views, the torso orientation estimates need to be aligned.

In our approach, we align ψi,k, i = 2, · · · , n, k = 1, · · · ,K

to the first view, i.e., we compute ψ
(a)
i,k = ψi,k − Δψi, where

Δψi is the camera looking direction angle difference between

view 1 and view i. Δψi, i = 2, · · · , n are known from the

system calibration. In the following discussion, p(c|si), i =
1, · · · , n represents the orientation-aligned BME output. The

integrated BME output is given by p(c|st) as follows

p(c|st) =
p(st|c)p(c)

p(st)
=

∏n
i p(si|c)p(c)

p(st)

=
∏n

i p(c|si)p(si)
p(c)n−1p(st)

∝
n∏

i

p(c|si) (4)

where a uniform prior of c is assumed. Based on 4, p(c|st)
is given by the product of a series of mixtures of Gaussian,

which can still be represented by a mixture of Gaussian. The

reduce the number of mixtures in p(c|st), in p(c|si), only

mixture components with αi,k > 0.1 are taken into account.

Once p(c|st) is obtained by integrating BME output from

multiple views, it can be used to initialize the tracking in

the first frame, and inform the sampling step in the follow-

ing frames according to (2) to generate complete sample set.

2.2.2. Likelihood Evaluation Using Multiple Views

Another major challenge in multi-view tracking is to evaluate

the sample weights using observation from all the views. The

likelihood of st, w.r.t. a sample c is

p(st|c) =
n∏

i

p(si|c) =
n∏

i

p(si|ci) (5)

where ci = (θ, ψi) is transformed from c with correct orienta-

tion angle with respect to the ith view so that ψi = ψ1 +Δψi.

p(si|ci) can be evaluated using learned RVM forward map-

ping. See [16] for details.

3. EXPERIMENTAL RESULTS
Dance movement is used for the evaluation of the proposed

system as a complex movement. In total 344 frames of motion

capture data from two sequences of dance movement were

used in training, down-sampled from 1376 frames. There

are 66 local joint angles in the original motion capture data,

but only 48 major joint angles are considered in these ex-

periments. Two different 3D models were used to produce

training silhouettes with diverse appearance. In total 4128

training silhouettes were rendered using poses with changing

torso orientations from 12 non-overlapping ranges. Then in

each camera view, an angle is uniformly drawn over an in-

terval of 30◦. Hence, for each given motion capture frame,

there are 12 complete pose frames with different torso orien-

tations. Using these image silhouettes and the corresponding

ground truth data of joint angles and torso orientation, a 5D

manifold of silhouettes S is obtained using GPLVM and a 3D

local joint angle manifold Θ is obtained using GPDM. Trajec-

tories of two dance sequences in Θ obtained using GPDM are

shown in Figure 2. The silhouette vectorization is based on

key frames obtained from 2100 silhouettes of one training se-

quence. Several key frames are shown in Figure 3. In total 42

key frames are obtained which means the vector of dance sil-

houette is 42 dimensions. The proposed multi-view tracking

system has been tested using both synthetic and real image

sets using three cameras. To evaluate the performance of the

proposed system, synthetic data were first used to evaluate

the accuracy of the tracking system. The average RMS er-

rors obtained using synthetic testing sequences from different

views are 10.9◦, 7.2◦ and 16◦ respectively. The multi-view

approach resulted in an RMS error of 4.9◦ with improved

tracking accuracy.

Real videos collected synchronously by three cameras

were used to test the proposed algorithm. The three cameras

were located at roughly mid-body height. Silhouettes were

obtained using background subtraction. Figure 4 presents

some of the silhouettes from three views. 3D rendering of

some of the multi-view tracking results are shown in the

last two rows of Figure 4. Body pose estimates are visually

accurate in most part of the video.

4. CONCLUSION
A multi-view framework for articulated motion tracking in

silhouette and pose manifolds is proposed to integrate the

discriminative- and generative-based approaches. The pro-

posed framework makes use of multiple views to improve
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Fig. 2. Two views of a 3D GPDM learned using dance data

set ΘT from two sequences.

Fig. 3. Some key frames for dance silhouettes vectorization.

tracking accuracy, reduce ambiguity and handle complex

movement such as dance.

5. ACKNOWLEDGEMENT

This paper is based upon work partly supported by U.S.

National Science Foundation on CISE-RI no. 0403428 and

IGERT no. 0504647. 1

6. REFERENCES

[1] Neil D. Lawrence, “Gaussian process latent variable models

for visualization of high dimensional data,” in Proceedings of
Conference on Neural Information Processing Systems, 2003.

[2] Jack M. Wang, David J. Fleet, and Aaron Hertzmann, “Gaus-

sian process dynamical models.,” in Proceedings of Confer-
ence on Neural Information Processing Systems, 2006, pp.

1441–1448.
[3] D.J. Fleet R. Urtasun and P. Fua, “3D people tracking with

gaussian process dynamical models,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, 2006.

[4] K. Grauman, G. Shakhnarovich, and T.J. Darrell, “A bayesian

approach to image-based visual hull reconstruction,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2003, pp. I: 187–194.

[5] I.Mikic, M.M.Trivedi, E.Hunter, and P.C.Cosman, “Human

body model acquisition and tracking using voxel data,” Inter-
national Journal Of Computer Vision, vol. 53, no. 3, pp. 199–

223, July 2003.
[6] S. Cheng and M. Trivedi, “Articulated human body pose infer-

ence from voxel data using a kinematically constrained gaus-

sian mixture model,” in EHuM2: Workshop on Evaluation of
Articulated Human Motion and Pose Estimation, 2007.

[7] Ankur Agarwal and Bill Triggs, “3D human pose from sil-

houettes by relevance vector regression,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2004.

[8] Kristen Grauman, Gregory Shakhnarovich, and Trevor Darrell,

“Inferring 3D structure with a statistical image-based shape

1Any opinions, findings and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the

views of the U.S. National Science Foundation (NSF).

Fig. 4. Three-view tracking results of dance movement. Rows

1-2, 3-4, and 5-6 show sample input images and silhouettes

from views 1, 2, and 3. The last two rows show the tracked

poses rendered from view 1 and a novel view.

model,” in Proceedings of the IEEE International Conference
on Computer Vision, Nice, France, October 2003.

[9] Ahmed Elgammal and Chan-Su Lee, “Inferring 3D body pose

from silhouettes using activity manifold learning,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2004.

[10] Z. Li D. Metaxas C. Sminchisescu, A. Kanaujia, “Conditional

visual tracking in kernel space,” in Proceedings of Conference
on Neural Information Processing Systems, 2005.

[11] Ankur Agarwal and Bill Triggs, “Monocular human motion

capture with a mixture of regressors,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2005.

[12] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas, “Dis-

criminative density propagation for 3D human motion estima-

tion,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2005.

[13] R. Rosales, M.Siddiqui, J.Alon, and S.Sclaroff, “Estimating

3d body pose using uncalibrated cameras,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2001, pp. I:821–827.

[14] Teofilo E. de Campos and D.W. Murray, “Regression-based

hand pose estimation from multiple cameras,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2006, pp. I: 782–789.

[15] A. Bissacco, M.H. Yang, and S. Soatto, “Fast human pose

estimation using appearance and motion via multi-dimensional

boosting regression,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2007.

[16] Feng Guo and Gang Qian, “Monocular 3d tracking of ar-

ticulated human motion in silhouette and pose manifolds,”

EURASIP Journal on Image and Video Processing, 2008.
[17] I. Borg and P. Groenen, Modern multidimensional scaling.

Theory and applications, Kluwer Academic Publishers, 2005.

1784


