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ABSTRACT
We propose novel algorithms for organizing large image and video
datasets using both the visual content and the associated side-
information, such as time, location, authorship, and so on. Earlier
research have used side-information as pre-filter before visual analy-
sis is performed, and we design a machine learning algorithm to
model the join statistics of the content and the side information. Our
algorithm, Diverse-Density Contextual Clustering (D2C2), starts by
finding unique patterns for each sub-collection sharing the same
side-info, e.g., scenes from winter. It then finds the common pat-
terns that are shared among all subsets, e.g., persistent scenes across
all seasons. These unique and common prototypes are found with
Multiple Instance Learning and subsequent clustering steps. We
evaluate D2C2 on two web photo collections from Flickr and one
news video collection from TRECVID. Results show that not only
the visual patterns found by D2C2 are intuitively salient across dif-
ferent seasons, locations and events, classifiers constructed from
the unique and common patterns also outperform state-of-the-art
bag-of-features classifiers.

Index Terms— Pattern clustering methods, Image classification

1. INTRODUCTION

The proliferation of digital photos and videos calls for effective tools
for organizing them. Such organization usually makes use of two
types of information: the visual content, e.g., pixels or pixel se-
quences in images and videos; and media meta data, such as the time,
location, tags, or source of capture, which often comes attached to
the media file and provides additional information other than what
is in the image – the latter is often dubbed as side information. This
paper focuses on the joint analysis of visual content and side infor-
mation in image/video collections, so as to discover meaningful vi-
sual themes, improve automatic recognition and help browsing and
navigation of large collections.

The use of content and side information have been explored by
prior work. Meta-tags alone can reveal semantic sub-clusters, such
as the three distinct meanings of apple as “fruit, Mac computer, or
New York City/Big Apple” revealed by Flickr tag co-occurrences
[1]. Significant recent efforts are also devoted to using visual content
alone for recognition, leading to large-scale public research bench-
marks [2]. Recent work in web image analysis has effectively lever-
aged both visual content and side information. There, text keywords
[3] or geotags [4] are used to pre-filter a much larger collection, and
then an image analysis step performs either keyword annotation with
region analysis [3], or landmark discovery using interest point link-
ing [4]. Note, however, that the use of visual content and side infor-
mation is essentially disjoint in these existing systems. Furthermore,
existing work handles only one type of side information, e.g., tag,
or location, and there is no consistency exploited across different
sub-slices of the collection, e.g., [4] discovers the appearance of the
golden gate bridge, but does not recognize similar bridges elsewhere.

We propose an algorithm to discover salient patterns from joint
statistics of visual content and side information. The proposed al-
gorithm is flexible enough to handle many types of side information
simultaneously (e.g. time, location, author, source, tags). It also
exploits both the distinctions and the consistencies among diverse
sub-collections (e.g. tennis courts around the world). An overview
of our approach is shown in Fig.1. We first partition a topic-based
broad collection into subsets, according to different values in side
information, e.g. date and/or location of tennis Grand Slams that
naturally form four different events: Wimbledon, US Open, French
Open and Australian Open. We propose a Diverse-Density Contex-
tual Clustering (D2C2) algorithm that analyzes the statistics within
and across different subsets and finds the unique and common vi-
sual patterns on image regions. D2C2 can be seen as an extension of
the well-known Multiple Instance Learning algorithm for compar-
ing collections separated by side information with multiple features.
The resulting clusters intuitively reveal distinct visual patterns in the
collection, e.g., tennis courts versus audience in Fig.1. We also suc-
cessfully use D2C2 patterns as visual codebooks for semantic clas-
sification. Our experiments show that codebook constructed with
D2C2 outperforms existing content-only approaches for 0.1∼0.15
in average precision.

In the rest of this paper, Sec.2 describes the D2C2 algorithm in
detail, Sec.3 presents two evaluations on three datasets, and Sec.4
concludes this work.

Fig. 1. Visual pattern discovery overview.

2. DISCOVER UNIQUE AND COMMON PATTERNS
WITH DIVERSE-DENSITY CONTEXTUAL CLUSTERING

Let X denote a large data set containing L images x1, . . . , xL, each
has associated side information y1, . . . , yL. We start by segmenting
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Fig. 2. Diverse Density prototype learning (see Sec 2.1).

an image x into N different regions based on color and texture co-
herence, i.e. x={r1, . . . , rN}. For each region r we extract M dif-
ferent visual features measuring its color, texture and shape statistics,
denote r=[f1, . . . , fM ]T , where each feature fh is a dh-dimensional
vector, i.e., fh ∈R

dh . We assume that the side information variable
y takes one among K discrete values, yl ∈ {1, . . . , K}, e.g., possi-
ble cross-products of a finite set of dates, locations and/or broadcast
channels. We then partition the image set X into K subsets based
on the values of y, i.e., X =X1 ∪ . . . ∪ XK , and yl =k if xl∈Xk.

The goal of our algorithm is to find “patterns”, i.e. representative
regions r and their corresponding feature points f in their respec-
tive feature spaces, that are unique for each subset Xk, or common
among all subsets X1, . . . ,XK . Uniqueness and commonality can
be thought of as a statistical diff operator on image collections, and
therefore can reveal what are persistent, new, or fading among sub-
collections. And the D2C2 is one method for achieving this.

The D2C2 algorithm consists of three steps: (1) Learn unique
pattern prototypes for each of the K subsets on each feature using
the diverse-density criteria with their contextual side-information y;
(2) Learn unique patterns for each subset by fusing information from
all M features; (3) Learn common patterns among all K subsets
based on the results of unique patterns. Finally, each image region is
mapped into either a unique or a common codeword learned above,
and the cookbook is in turn used for visualization and classification.

2.1. Learning unique prototypes
We treat each image xl, l ∈ {1, . . . , L} as a “bag-of-regions”
{rl1, . . . , rlNl}. To learn the unique patterns for a subset Xk, it
is natural to introduce an auxiliary variable ỹl that turns “on” for
images in subset Xk, and “off” otherwise. i.e., ỹl = 1 iff. yl = k,
and ỹl = −1 if yl �= k. Note that ỹ are labels over bags x rather
than over instances r. For a “positive” image bag xl ∈ Xk, it is
sensible to have at least one of its instances being “unique” to subset
Xk, i.e. similar to other unique instances in other positive bags,
and dissimilar to all instances in all “negative” bags X \ Xk. As
illustrated in Fig. 2. This formulation is known as Multiple Instance
Learning (MIL) [5] in the literature, and here we repeat an MIL-type
procedure K-times in order to obtain the unique pattern proto-
types (f∗kh,w∗

kh), k = 1, . . . , K , consisting of a prototype point
(or centroid) f∗kh = [f∗

kh1, . . . , f
∗
khdh

]T in the hth feature space
for subset Xk, and the corresponding weights for each dimension
w∗

kh =[w∗
kh1, . . . , w

∗
khdh

]T , also of dimension dh.
Among the flavors of MIL objective functions, the Diverse Den-

sity (DD) objective function is one that fits our intuitive objective
above and also with efficient inference algorithm available [6] via
expectation-maximization (EM). In the rest of Sec 2.1, we omit sub-
scripts k, h without loss of generality, as each f∗ will be indepen-
dently optimized over the different image bags l ∈ {1, . . . , L} and
different instances j ∈ {1, . . . , Nl} in each bag xl. The DD objec-
tive function for one image bag xl is simply written as:

Ql =
1+ỹl

2
− ỹl

�Nl

j=1
(1−e−||flj−f∗||2w∗ ) (1)

where flj is the feature vector of region rlj , and ‖f‖w denotes the
weighted 2-norm of vector f by w, i.e., ‖f‖w = (

�d
i=1(fiwi)

2)
1
2 .

For a positive bag xl, Ql will be close to 1 when f∗ is close to any
of its instances, and Ql will be small when f∗ is far from all its
instances. For a negative bag xl, Ql will be large when f∗ is far from
all its instances. By aggregating Eq (1) over all bags the optimal f∗

will be close to instances in the positive bags and far from all of the
instances in the negative bags.

For each positive image bag xl ∈ Xk, there should be at least
one instance to be treated as a positive sample to carry the label of
that bag. This instance, denoted by L(xl), is identified as the closest
instance to the prototype f∗ and is given by Eq (2). For each negative
image bag xl ∈ {X \Xk}, on the other hand, all instances are treated
as negative samples, whose contribution to Ql are all preserved.

L(xl)=arg max
Nl
j=1{exp[−‖flj−f∗‖2

w∗ ]} (2)

This leads to the max-ed version of Eq (1) on the positive bags:

Ql =

�
e−||flL(xl)

−f∗||2w∗ , xl ∈ Xk�Nl
j=1(1 − e−‖flj−f∗‖2

w∗ ) , xl ∈ {X \ Xk}
(3)

The DD function in Eq (3) is used to construct an objective
function over all bags, which in turn is maximized by an EM al-
gorithm [6]. In the E-step, the aggregate DD function is given by
Q = Q+ · Q− where Q+ and Q− are DD functions for all positive
bags and all negative bags, respectively:

Q+(f∗,w∗) =
�

xl∈Xk

e−‖flL(xl)
−f∗‖2

w∗

Q−(f∗,w∗) =
�

xl∈{X\Xk}

�Nl

j=1
(1 − e−‖flj−f∗‖2

w∗ )

In the M-step, we use gradient ascent to maximize Q. The up-
date equations for the prototype points and weights are as follows,
with learning rate η empirically set to 5×10−3.

f∗ ← f∗+ η
∂log Q

∂f∗

w∗ ← w∗+ η
∂log Q

∂w∗ ,

Define a notation, Diag(W ), which generates a diagonal matrix by

using the corresponding diagonal entries from matrix W , i.e. W̃ =
Diag(W ) so that entry W̃ii =Wii, ∀i and W̃ij =0, ∀i, j, i �= j. The
partial vectors are computed as:

∂ logQ

∂f∗
=2Diag(w∗w∗T

)[
�

xl∈Xk

(flL(xl)−f∗)

−
�

xl∈{X\Xk}

�Nl

j=1
(flj−f∗)

e−‖flj−f∗‖2
w∗

1 − e−‖flj−f∗‖2
w∗

]

∂ logQ

∂w∗ =−2w∗[
�

xl∈Xk

Diag
�
(flL(xl)−f∗)(flL(xl)−f∗)T

�

+
�

xl∈{X\Xk}

�Nl

j=1
Diag
�
(flj−f∗)(flj−f∗)T

� e−‖flj−f∗‖2
w∗

1−e−‖flj−f∗‖2
w∗

]

We repeat DD-optimization above from each instance in each
positive bag, and prototypes with DD values smaller than a threshold
T (that equals to the mean of DD values of all learned prototypes) are
excluded. Regions closest to the remaining prototypes are obtained.
These optimal prototypes f∗ and the regions close to them together
form a pool of candidate regions to represent the unique patterns in
data subset Xk with feature h.
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2.2. Unique Pattern Learning with Multiple Features
We learn unique patterns Uk1, . . . , Ukmk from the candidate regions
using multiple features. Let rh1, . . . , rhnh be nh candidate regions

learned for the hth feature. A pairwise similarity matrix S is con-
structed over all the candidate regions from all different types of fea-
tures as follows: For each type of feature h, we calculate the pairwise
similarities among all the candidate regions rh1, . . . , rhnh from this
feature type, and we add these similarities s(rhi, rhj) to the corre-
sponding entry in the overall similarity matrix by multiplying with
a weight vh (which measures the importance of this feature type).
s(rhi, rhj) = exp{−E(rhi, rhj)} where E(rhi, rhj) is the Euclid-
ean distance of rhi, rhj . Spectral clustering [7] is then used on S
to cluster all candidate regions from different features into a set of
region clusters Uk1, . . . , Ukmk , essentially re-organizing the set of
candidate regions from Sec 2.1

2.3. Learning of Common Patterns
The final step of D2C2 involves learning a set of common pat-
terns based on the outcome of unique patterns. This is done
by excluding the regions that belong to all unique pattern sets
{Uk1, . . . , Ukmk}, k = 1, . . . , K and clustering the remaining
regions in the entire dataset X , using a clustering algorithm such
as K-means. This gives us a set of cluster centers C1, . . . , Cm and
their member regions, and we treat each Cj as a common pattern for
describing characteristics shared across data subsets.

2.4. Vocabulary-based Feature Representation
The unique and common patterns form unique and common visual
codebooks respectively, where each unique or common pattern is
a unique or common codeword. Using unique patterns as an ex-
ample, for an image xl, each segmented region rlj ∈ xl can be
mapped to each unique codeword Uki by using the maximum simi-
larity between rlj and the prototype regions in the codeword, i.e.,
m(rlj , Uki) = maxrki∈Uki{s(rlj , rki)}. Then image xl can be
mapped to codeword Uki by using the maximum similarity between
Uki and all regions in xl, i.e., m(xl, Uki)=maxrlj∈xl m(rlj , Uki).
That is, the unique codebook spans a feature space for representing
each image xl as a feature vector formed by the mapping score of
this image to each codeword m(xl, Uki). Based on this feature vec-
tor, classifiers such as SVM can be used for concept classification.
Similarly, image xl can also be mapped to common patterns Cj to
form vocabulary-based features with entry m(xl, Cj).

3. EXPERIMENTAL RESULTS

We examine the outcome of the D2C2 algorithm in two ways: vi-
sualize the unique and common patterns, and evaluate the resulting
codebook for visual concept classification.

The evaluations are carried out on 3 different data sets. (1) 2000
Flickr images retrieved using the keyword “Jefferson Memorial”.
Using the taken date as the side information, these images are sep-
arated into four seasons in 2007: spring, summer, fall and winter.
For example, images for spring were taken between 2007-03-01 and
2007-05-31. (2) 2000 Flick images downloaded with query keyword
“Tennis”. Using the taken dates and location tags, these images are
separated into four events: US Open 2007, French Open 2007, Aus-
tralian Open 2007, and Wimbledon 2007. For example, images for
Australian Open were taken between 2007-01-15 and 2007-01-28 in
Melbourne, Australia. (3) 6112 keyframes taken from TRECVID
2005 dataset [2]. They were aired in 10 news broadcasts during a
one-week period in November 6–12, 2004. The channel information
(CCTV4 or NBC) are treated as side-information and the videos are
partitioned accordingly. For both of the two Flickr image data sets,

Fig. 4. Unique and common patterns from news videos. (a) and (b):
two unique clusters from CCTV4 and NBC, respectively; (c): two
common clusters across both channels.

1000 images are randomly selected for training and the rest 1000
images are used for testing. For the TRECVID data set, 5 videos
(3009 keyframes) are randomly selected for training and the rest
are used for testing. 6 types of low-level visual features are used:
3 color features including color histogram, color correlogram and
grid-based color moments; 2 texture features including wavelet tex-
ture and tamura texture; and edge direction histogram.

3.1. Visualizing the unique and common patterns
Fig. 3 and Fig. 4 show representative unique and common patterns in
the three datasets. We visualize each pattern by looking at a sample
of image regions closest to the centroid of the corresponding code-
book. A segmentation mask is overlayed on each region segment,
with pixels that belong to the region shown in their original color
and intensity, while pixels not in the region shown in black.

For example, the unique patterns “Jefferson Memorial” dataset
turns out to be the seasonal vegetation changes in the surroundings
of the landmark: cherry blossom in the spring, thriving tree leaves in
the summer, foliage colors in the fall, and white snows in the winter.
The four common patterns in this set are the interior and exterior of
the memorial building itself, as well as the blue sky and waterfront
segments that are “seasonally-invariant”. For the four tennis tour-
naments in Grand Slam, their different court surfaces are the most
salient among the unique clusters, i.e. plexicushion for Australian
Open, clay court for French Open, grass for Wimbledon, and deco
turf for US Open. As for the common patterns, sponsorship logos
around the sport field, the blue sky, and the green stadium ground
are shared by most tournament scenes.

For news data, the different channel logos and studio back-
grounds are identified as unique, i.e., the CCTV studio setting with
a screen wall and their overlay captions with a red backdrop, as well
as the NBC logo, different section headings and caption with unique
fonts. There was significant coverage on the military actions in Iraq
in November 2004, the common patterns across these two channels
included the building ruins and sky in these stories.

3.2. Classification Performance

We use a set of binary classification tasks on each dataset to evaluate
the effectiveness of codebooks from unique+common patterns. The
classes on the two Flickr datasets are custom-designed for this ex-
periment, four for “Jefferson Memorial” and eight for “Tennis”. For
TRECVID news videos, we selected a subset of 10 generic concepts
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Fig. 3. Unique and common patterns from the Flickr images.

(a) (b) (c) (d)

Fig. 5. Per-concept performance over (a) Jefferson Memorial (b) Tennis 2007, and (c) TRECVID datasets. (d) Influence of codebook size on
the tennis dataset.

from the LSCOM ontology [8] that has significant presence in the ten
newscasts. We generate vocabulary-based codebook representation
(Sec. 2.4) from the unique and common patterns, and we also con-
catenate the two features and dub it as “unique+common” patterns.
The codebooks generated by D2C2 is compared with a “bag-of-
features” (BoF) baseline [9], where a cluster codebook is generated
from all regions from the entire data set with the Kmeans algorithm,
without any side information. SVMs are trained on these histograms
features, and the average precision (AP, area under precision-recall
curve) was measured for each concept, and mean-average-precision
(MAP) is reported over all concepts [2].

Fig.5 (a–c) gives an overview of concept detection performance
in the three data sets, with 200 codewords for each different code-
book. We can see that the unique patterns alone outperforms BoF by
a margin over all concepts. While the common patterns alone per-
form much worse, it improves the overall performance when used
together with the unique patterns. Fig.5(d) shows the performance
variations with respect to the codebook size of the unique codebook.
We can see that the performance only undergoes slight change as the
size of the codebook varies from 100 to 500. Such results demon-
strates that the unique and common patterns not only discover vi-
sually meaningful themes, they are also helpful for building better
classifiers. Furthermore, there is a large range of codebook sizes
where the proposed D2C2 algorithm can perform well.

4. CONCLUSION

We propose a D2C2 algorithm for visual pattern discovery by joint
analysis of visual content and side information. A content collec-
tion is partitioned into subsets based on side information, and the
unique and common visual patterns are discovered with multiple in-

stance learning and clustering steps that analyzes across and within
these subsets. Such patterns help to visualize the data content and
generate vocabulary-based features for semantic classification. The
proposed framework is rather general which can handle all types of
side information, and incorporate different common/unique pattern
extraction algorithms. One future work is to improve the genera-
tion of common patterns by emphasizing the shared consistencies,
instead of the current heuristic clustering. Another future work is to
explore other applications using the unique+common patterns, such
as those listed in Fig.1.
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