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ABSTRACT

Standard Hidden Markov Model (HMM) and the more gen-

eral Dynamic Bayesian Network (DBN) models assume sta-

tionarity of state transition distribution. However, this as-

sumption does not hold for many real life events of interest.

In this paper, we propose a new time sequence model that

extends HMM to time varying scenario. The time varying

property is realized in our model by explicitly allowing the

change of state transition density as the time spent in a partic-

ular state passes by. Rather than keeping transition densities

at different time spots independent of each other, we exploit

their temporal correlation by applying a hierarchical Dirichlet

prior. This leads to a more robust time varying model, espe-

cially when training data are scarce. We also employ Markov

Chain Monte Carlo (MCMC) sampling in learning the MAP

estimate of time varying parameters, with a transition kernel

incorporating linear optimization. The proposed model is ap-

plied to recognizing real video events, and is shown to out-

perform existing HMM-based methods.

Index Terms— event recognition, time varying, HMM,

MCMC

1. INTRODUCTION

Recognizing events in video sequence has important appli-

cations in intelligent surveillance, traffic monitoring, human-

computer interaction, robot learning, video summarization,

and etc.

An event can be thought as a latent variable (e.g. an ac-

tivity) that generates a time sequence of observations (e.g.

2D trajectory). The common approach to recognize an event

comprises two steps: 1) extracting observation sequences

from video; and 2) interpreting those sequences of a partic-

ular event with a model. Building such a model is usually

difficult, since observation sequences are often featured with
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high dimension, multiple modality, variable duration and

noise contamination.

Many efforts have been paid in previous works to bridge

the gap between video observation and event model. Hid-

den Markov Model (HMM) and the more general Dynamic

Bayesian Network (DBN) are popular tools in this field, be-

cause of their power of modeling statistical patterns evolving

over time. Standard HMM and DBN models assume station-

arity of state transition distribution, keeping the model struc-

ture and parameter constant all the time. However, the sta-

tionarity assumption does not hold for many real life events

of interest. For example, two acquainted people will more

likely split apart after they have talked for a while than after

they have just met.

A few researchers have realized this limitation and tried

to adapt HMM or DBN to the non-stationary scenario. In

[1, 2], a non-stationary event model is decomposed into a

cascade of stationary sub-DBNs, each of which has a distinct

structure. The switching time between adjacent sub-DBNs is

first determined by change detection, and then each sub-DBN

can be constructed as in stationary case. The Non-stationary

Hidden Semi-Markov Model (NHSMM) proposed in [3] aug-

ments HMM with time varying parameters, so that the tran-

sition probability to a new state varies in accordance with the

time spent in current state. This amounts to build a HMM for

each individual time epoch, and generally results in a more ac-

curate description of non-stationary processes than the piece-

wise approximation in [1, 2]. However, NHSMM has an obvi-

ous drawback that the number of model parameters increases

linearly with the length of maximum state duration. Such un-

restricted growth of parameters will give rise to the problem

of model over-fitting, especially when a large training set is

unavailable.

In this paper we aim to solve the dilemma between model

flexibility and robustness, and put forward a novel event

model, called Time Varying HMM (TVHMM). Our model

encodes non-stationarity into a finite sequence of time vary-

ing transition densities and can simulate state duration of

infinite length. The temporal dependence between time vary-

ing parameters is taken into consideration by applying a
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hierarchical Dirichlet prior. In this way, transition densities

of different time spots are optimized jointly and over-fitting

can be avoided. We employ an efficient Markov Chain Monte

Carlo (MCMC) method in learning the time varying param-

eters, which gives a better MAP estimate than simple EM

algorithm. The proposed model is shown to perform better

than other HMM-based methods in the recognition of real life

activities.

2. TIME VARYING HMM

2.1. Time Varying Transition Matrix

Following the notations in HMM, we denote here the hid-

den state at time t as qt, and its observation as Ot. The hid-

den state can have one of N possible values {S1, ..., SN},
and the observation value can be either discrete or continu-

ous. The distribution of observation conditioned on hidden

state, P (Ot|qt), is known as the measurement model. And

the state transition distribution P (qt+1|qt), also characterized

by a N × N transition probability matrix A, is the dynamic

model. In TVHMM, the transition matrix A is defined to

change as the time spent so far in current state elapses, and

falls into one of the M predefined time-varying stages:

A(τ) = {aij(m)} i, j = 1...N (1)

m = min(τ,M)

where τ is the length of time that current state has been kept,

and aij(m) is the probability of transiting from state Si to

state Sj in the m’th time varying stage.

Eq. (1) actually defines an individual transition matrix

for each of the first M time epochs within a state duration,

and uses {aij(M)} as a constant transition matrix after-

wards. This can be deemed as a generalization of NHSMM

[3], whose non-stationary formulation can be recovered by

setting the diagonal elements of {aij(M)} to zero. With

our scheme, the maximum state duration length is no longer

constrained by the stage number M . This can be seen by

explicitly evaluating the state duration distribution with the

sequence of self-transition probabilities {aii(m)}m=1...M in

Eq. (1):

Di(τ) =

⎧⎪⎪⎨
⎪⎪⎩

τ−1∏
m=1

aii(m)(1− aii(τ)), τ = 1...M

M−1∏
m=1

aii(m)[aii(M)]τ−M (1− aii(M)), τ > M

(2)

where Di(τ) is the probability of staying in state i for exactly

τ time epochs. With different choices of aii(m)’s, Di(τ) can

take any probability for τ < M , and diminishes exponentially

for τ ≥ M . Therefore, TVHMM allows a state to survive for

an arbitrarily long time, and the state duration distribution can

be modeled accurately up to the first M time epochs. Two

examples are illustrated in Fig. 1.
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Fig. 1. State duration distribution in TVHMM for (a) con-

stant self-transition probability; (b) linearly decreasing self-

transition probability.
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Fig. 2. Temporally independent transition probabilities versus

time varying stage, learned with (a) 3 cases; (b) 10 cases.

2.2. Hierarchical Dirichlet Prior

To construct a time varying model as specified in Eq. (1), we

are in fact required to build a series of M HMM’s, each of

which has a distinct N × N transition matrix. With such a

great number of parameters, the model is in danger of over-

fitting, especially when training data are scarce (which is of-

ten the case for video applications). For example, taking re-

spectively 3 and 10 training cases from the data in Sec. 4, we

construct two such time varying models and plot part of their

parameters in Fig. 2. The parameter set estimated using only

3 cases is more jittered in time axis due to the statistical noise

in small training data set. While the more accurate parame-

ters estimated with 10 cases change smoothly through time.

This should be a general property for most video-based appli-

cations, where the sampling interval is rather short compared

with the length of any practical event.

We hereby propose to restrict the degree of freedom of

aij(m)’s by imposing a hierarchical Dirichlet [4] prior:

ai(m) ∼ Dir(σai(m− 1)) i = 1...N, m = 2...M (3)

where ai(m) = [ai1(m), ai2(m), ..., aiN (m)]T , Dir(·) de-

notes Dirichlet distribution, and σ is a smoothing constant

chosen in advance. Dirichlet distribution is well-suited to

model probability density as it is supported over the probabil-

ity simplex. And hierarchical Dirichlet distribution conveys

the information that the current transition density of TVHMM

is very likely to be close to the one at previous time epoch,
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which conforms to the smooth parameter changing assump-

tion mentioned above. With the dependence between tem-

porally adjacent parameters taken into account, the statistical

uncertainty introduced by small training set can be compen-

sated, and the balance between model flexibility and robust-

ness is achieved in TVHMM.

3. LEARNING MAP PARAMETERS

3.1. Dynamic Bayesian Network Representation

Since the transition probability in TVHMM depends on the

duration of current state, we are required to keep the history

of hidden state up to M epochs in analyzing our model. To

simplify the computation, we propose to restore the first order

Markovian property of TVHMM by designating an auxiliary

hidden variable dt to the time varying stage index. Then the

model can be represented in the form of dynamic Bayesian

network with a new dynamic model governing the joint tran-

sition distribution of qt and dt:

P (qj
t , d

n
t |qi

t−1, d
m
t−1)

= P (qj
t |qi

t−1, d
m
t−1)P (dn

t |qi
t−1, d

m
t−1, q

j
t )

=
{

aij(m)δ(n−min(m + 1,M)) i = j
aij(m)δ(n− 1) i �= j

(4)

where qi
t stands for qt = Si, dm

t stands for dt = m, and δ(·)
is delta function. Note that dt actually transits in a determin-

istic way, so its introduction will not expand the dimension of

hidden state space too much.

With the model structure defined in Eq. (4), we can apply

the general methods of learning and inferring DBN [5] on the

proposed TVHMM. The MAP estimate of model parameter

can be found using EM algorithm, which iteratively optimizes

the following objective:

max
{ai(m)}

P ({ai(m)}|{qt, dt, Ot})
→ max

{ai(m)}
P ({qt, dt, Ot}|{ai(m)}) P ({ai(m)}) (5)

where {ai(m)} stands for the time varying parameter set

{ai(1)...ai(M)}, {qt, dt, Ot} is the complete data sequence

expected with old parameters, and P ({ai(m)}) is the joint

parameter distribution derived from Eq. (3).

3.2. MCMC Sampling

The joint optimization of Eq. (5) is intractable. The authors

of [4] proposed to find an approximated solution with Linear

Minimum Mean Square Error (LMMSE) estimator. However,

the solution given by LMMSE is often far from true MAP

parameter, due to the high dimensionality of the parameter

set {ai(m)}. Therefore, we propose to simulate the full pos-

terior of P ({ai(m)}|{qt, dt, Ot}) with MCMC, and use the

MCMC sample with the highest posterior probability as our

MAP estimate.

Metropolis-Hastings algorithm [6] is employed in the

MCMC sampling. Given the current parameter set {ai(m)},
a new sample {a∗i (m)} is generated by sequentially drawing

a∗i (1), a∗i (2), ... a∗i (M) from Dirichlet distributions centered

at the output of LMMSE:

a∗i (m) ∼ P (a∗i (m)|a∗i (m− 1),ai(m + 1))
∼ Dir[σa∗i (m− 1) + (σ + 1)ai(m + 1) + ssi(m)]

(6)

where ssi(m) is an N -dimensional vector whose jth element

is the expected value of
∑

t P (qj
t , q

i
t−1, d

m
t−1). The terms of

a∗i (m − 1) and ai(m + 1) are dropped from Eq. (6) when

they are not defined for m = 1 and m = M . Thus the overall

transition kernel is:

P ({a∗i (m)}|{ai(m)})
= P (a∗i (1)|ai(2))P (a∗i (M)|a∗i (M − 1))

×
M−1∏
m=2

P (a∗i (m)|a∗i (m− 1),ai(m + 1)) (7)

This transition kernel can efficiently explore parameter space

with the knowledge provided by LMMSE; at the same time,

the uncertainty in sampling grants it a potential to find better

MAP estimate. This is why MCMC method is preferred here.

The new sample {a∗i (m)} is accepted with probability

PA = min
(

1,
P ({qt, dt, Ot}|{a∗i (m)})
P ({qt, dt, Ot}|{ai(m)})×

P ({a∗i (m)})P ({ai(m)}|{a∗i (m)})
P ({ai(m)})P ({a∗i (m)}|{ai(m)})

)
(8)

If accepted, {a∗i (m)} will take the place of {ai(m)} in future

sampling. The sampling process proceeds until the distribu-

tion of accepted samples converges to the parameter posterior

of Eq. (5).

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of TVHMM

through two real event recognition tasks.

We first try to recognize three basic human motions - run-

ning, walking and jumping - with articulation trajectory data

provided by [7]. The dimension-reduced data serve as obser-

vation here and states are defined as cluster centers found by

K-means. For each type of event, a model is learned with 4

training cases. In the testing phase, 6 unseen cases of each

type are fed into all the three models, and the normalized

likelihood is used as recognition probability. The recogni-

tion rates of the correct event averaged over all test cases are

listed in Table 1, and the results of HMM and NHSMM are

also shown for comparison. The proposed TVHMM achieves

much higher recognition rate than the two competitors.
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Table 1. Average recognition rate for human motion.

model running walking jumping

HMM 0.994 0.551 0.414

NHSMM 0.996 0.791 0.858

TVHMM 0.999 0.856 0.984
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Fig. 3. State duration distribution.
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Fig. 4. MAP parameter probability versus EM iteration.

The superiority of TVHMM is attributed to its flexibility

in modeling state duration distribution, as visualized in Fig. 3.

The state duration distributions learnt with all the three mod-

els are compared with the ’truth’ distribution estimated from

the HMM-inferred most likely state sequence. It is shown

that both NHSMM and TVHMM are better at modeling non-

exponential duration distribution than HMM. TVHMM per-

forms even better if the distribution spans beyond stage num-

ber M (set to 10 for both TVHMM and NHSMM here).

In our second experiment, moving trajectories of pedestri-

ans [8] and vehicles [9] are subject to recognition. We build

the models in a similar way as in the first experiment and

get the recognition rates in Table 2. Although the two motion

patterns are difficult to distinguish using HMM and NHSMM,

our model still gives higher recognition rate. The underlying

reason is revealed in Fig. 4, which plots the ascent of MAP

parameter probability during EM learning. It is shown that,

with our MCMC scheme employed in the maximization step

of EM, the posterior probability converges to a higher value

in fewer iterations than when LMMSE is used.

Table 2. Average recognition rate for moving object.

model pedestrian vehicle

HMM 0.582 0.542

NHSMM 0.588 0.568

TVHMM 0.610 0.639

5. CONCLUSION

We present a time varying version of HMM in which the tran-

sition matrix varies with the time spent in the current state.

Transition density is defined for state duration of any length

so that our model is capable of simulating duration distribu-

tions of diversified forms and infinite length. The temporal

coherence of time varying parameters is considered by intro-

ducing a hierarchical Dirichlet prior and the MAP estimate is

obtained with the aid of MCMC sampling, where the transi-

tion kernel is optimized by LMMSE. The proposed model is

evaluated on two real event recognition problems, and shows

substantially improved recognition rate over existing meth-

ods.
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