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Abstract: A weighted logarithmic merit function that incor-
porates a diagonal matrix is utilized for deriving a gradient dy-
namical system that converges to the actual canonical correlation
coordinates of arbitrary data matrices. The equilibrium points
of the resulting gradient system are determined and their stabil-
ity is thoroughly analyzed. Qualitative properties of the proposed
systems are analyzed in detail including the limit of solutions as
time approaches infinity. The performance of this system is also
examined.
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1 Introduction
Canonical correlation analysis (CCA) is a multivariate statistical
technique that has been widely used in many modern informa-
tion processing fields, such as text mining, statistical and med-
ical signal/image processing, facial expression recognition, and
communication theory. It is originally developed in [1]-[2]. The
applications of CCA require effective estimation of the singular
vectors of the coherence matrix of a pair of multivariate informa-
tion sources. Although the singular value decomposition (SVD)
of the coherence matrix can be used to implement the CCA, the
conventional matrix algebraic approach is often unsuitable for a
higher dimensional data as well as for the adaptive CCA due to
the very high computational load.

The CCA technique is described in most standard textbooks
on multivariate statistics, e.g., [3,4,5]. Serial and parallel algo-
rithms for CCA have been proposed in [6]. Work on nonlin-
ear canonical correlations analysis is dealt with in [7]-[8]. CCA
has been generalized in several directions. For example, multi-
set CCA is proposed in [9]-[10] by maximizing some generalized
measure of correlation.

The following notation will be used throughout. The symbol
IR denotes the set of real numbers. The transpose of a real
matrix x is denoted by xT , and the derivative of x with respect
to time is written as x′. If B is a square matrix, then tr(B) and
det(B) denote the trace and determinant of B, respectively. The
identity matrix of appropriate dimension is expressed with the
symbol I. The gradient and the Hessian matrix of a function f
are denoted by ∇f and H(f), respectively.

2 Background and Preliminaries

Given two multivariate data sets X and Y , let Rxx ∈ IRm×m,
and Ryy ∈ IRn×n, be an auto-covariance of x and y, respec-
tively. Let Rxy ∈ IRm×n, be a cross-covariance between x and
y. The conventional CCA consists of performing the singular

value decomposition of the coherence matrix Ĉ [12] defined as

Ĉ = R
− 1

2
xx RxyR

− 1
2

yy , (1)

where R
1
2
xx and R

1
2
yy are any symmetric square roots of Rxx and

Ryy, respectively. Assume that the SVD of Ĉ is

Ĉ = uΣvT + u2Σ2v
T
2 , (2)

where Σ = diag(σ1 , · · · , σp) and Σ2 = diag(σp+1, · · · , σn) are
diagonal matrices so that σi > σj for i = 1, · · · , p and j =

p + 1, · · · , n. The matrices u, v ∈ IRn×p and u2, v2 ∈ IRn×n−p

are orthogonal, i.e., uTu = I, vT v = I and uT
2 u2 = I, vT

2 v2 = I,

uTu2 = 0, vT v2 = 0. It can be easily verified that the matrix

U =
1√
2

[
u −u
v v

]
, (3a)

is orthogonal, i.e., UTU = I, and that

UT ĈU =

[
Σ 0
0 −Σ

]
, (3b)

where
¯̂
C =

[
0 Ĉ
ĈT 0

]
. (4a)

Thus
¯̂
C can be expressed as

¯̂
C = UΣ̄UT + U2Σ̄2U

T
2 , (4b)

where

Σ̄ =

[
0 Σ
Σ 0

]
, Σ̄2 =

[
0 Σ2

Σ2 0

]
,

U2 =
1√
2

[
u2 −u2

v2 v2

]
.

(4c)

Note that U2 is orthogonal, i.e., UT
2 U2 = I.

2.1 First and Second Order Differentials

Let F : IRn×p → IR be twice continously differentiable function,
the first and second order differentials of F are defined by

dF (x) =
dF (x+ εdx)

dε
|ε=0, (5a)

and

d2F (x) =
d2F (x+ εdx)

dε2
|ε=0. (5b)

To compute the gradient and the Hessian matrix for a merit
function F , the first and second order differentials need to be
derived first. In the next result, the first and second order differ-
entials for linear, quadratic, quartic, and logarithmic functions
are computed.
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Proposition 1. Let E ∈ IRn×n, b ∈ IRn×p, D ∈ IRp×p, where
D is diagonal matrix, and consider the functions F1, F2, F3, F4
defined over IRn×p by

F1(z) = tr(b
T z),

F2(z) = tr(z
TEzD),

F3(z) = tr((z
TEz)2),

F4(z) = tr{D log(zTEz)}.

(6a)

Then the first and second order differentials of F1, F2, F3, and
F4 are given by:

dF1(z) = tr(b
T dz), d2F1 = 0, (6b)

dF2 = tr{dzTEzD + zTEdzD)},
d2F2(z) = tr{2dzTEdzD},

(7a)

dF3 = 4tr{dzTEzzTEz},
d2F3(z) = 4tr{dzTEdzzTEz + dzTEzdzTEz

+ dzTEzzTEdz)},
(7b)

dF4(z) = tr{D(zTEz)−1(dzTEz + zTEdz)}, (7c)

and

d2F4 = 2tr{D(zTEz)−1dzTEdz}
− tr{D(zTET z)−1zTET dz(zTET z)−1zTET dz

− 2tr{D(zTEz)−1dzTEz(zTEz)−1zTEdz

− tr{D(zTEz)−1zTEdz(zTEz)−1zTEdz.

(7d)

Therefore, the gradient and the Hessian matrix of Fi, i =
1, 2, 3, 4, are

∇F1 = 0, H(F1) = 0

∇F2 = (E + ET )zD

HF2 = D ⊗ (E + ET )

∇F3 = 2Ez(zTEz) + 2ET z(zTET z)

H(F3) = 4I ⊗ EzzTE + 4I ⊗ET zzTET + 4KEz ⊗ zTET

∇F4 = EzD(zTEz)−1 +ET z(zTET z)−1D, (8a)

H(F4) =
1

2
(zTET z)−1D ⊗E +D(zTEz)−1 ⊗ ET

− (zTET z)−1D ⊗ Ez(zTEz)−1zTE

−D(zTEz)−1 ⊗ET z(zTET z)−1zTET

− 1

2
KEz(zTEz)−1D ⊗ (zTET z)−1zTET

− 1

2
KEz(zTEz)−1 ⊗D(zTET z)−1zTET

− 1

2
KET z(zTET z)−1D ⊗ (zTEz)−1zTE

− 1

2
KET z(zTET z)−1 ⊗D(zTEz)−1zTE

(8b)

for some permutation matrix K.

Proof: The proof is a direct application of the definitions (5a),
(5b), and Lemma 3 (see Appendix).

Proposition 2. Let A ∈ IRn×m, x ∈ IRn×p, y ∈ IRm×p, D ∈
IRp×p, D is diagonal, and consider the function defined by

F5(x, y) = tr{D log(xTAy)}. (9a)

Then the differentials of F5 with respect to x and y are

dxF5(x, y) = tr{D(xTAy)−1(dxTAy)

+D(yTAT x)−1(yTAT dx)},
(9b)

dyF5(x, y) = tr{D(xTAy)−1(xTAdy)

+D(yTATx)−1(dyTAT dx)},
(9c)

and hence

∇xF5 = AyD(xTAy)−1 +Ay(xTAy)−1D

∇yF5 = ATDx(yTAT x)−1 + ATx(yTATx)−1D.
(9d)

Proof: The proof is a direct application of the definitions (5a),
(5b), and the trace identity

tr(DW ) =
1

2
tr(DW +DWT ),

where D andW are any two square matrices of same dimensions
and D is diagonal.

3 A Weighted Logarithmic merit Func-
tion

In this section, a gradient dynamical system for computing
canonical correlations is derived from a logarithmic merit func-
tion weighted by a diagonal matix. The merit function that will
be considered are defined as

G(x, y) = tr{D log(xTAy)} − α

2
tr{(xTBx+ yTCy)}, (10)

where A = Rxy ∈ IRn×m, B = Rxx ∈ IRn×n, C = Ryy ∈
IRm×m, D ∈ IRp×p, x ∈ IRn×p, y ∈ IRm×p, and α > 0. It
will be assumed that B and C are positive definite matrices.
The diagonal matrix is incorporated within the merit function
G, since the principal directions x and y estimated using the
merit function G with D = I are rotated singular vectors of

the coherence matrix Ĉ. On the other hand, if D is a diagonal
matrix whose eigenvalues are all positive and distinct, then the
function G is optimized at exact principal x and y directions.

The merit function G can be shown to be upper bounded and
−G is radially unbounded. Thus gradient systems converge to
the principal singular components of the coherence matrix. The
case where B = I, C = I, and D = I leads to computing singular
subspaces.

The behavior of the function G can be illustrated in the fol-
lowing simple example.

Example 1: Let F (x, y) = d log(axy) − b
2
x2 − c

2
y2, where

b, c, d > 0 and a �= 0. The function F is defined for all (x, y)
such that axy > 0. The objective is to find the minima and
maxima of F over IR2. The gradient and the Hessian matrix of
F can be verified to be

∇F =

[
d
x
− bx

d
y
− cy

]
, (11a)

and

∇2F =

[− d
x2 − b 0

0 −d
y2 − c

]
. (11b)

The equilibrium points of F are solutions of the equations

d

x
− bx = 0,

d

y
− cy = 0.

(12)

When x �= 0 and y �= 0, these equations imply that

x2 =
d

b
,

y2 =
d

c
.

Thus the set of equilibrium points consists of the point (x̂, ŷ)
such that
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x̂ = ±
√
d

b
,

ŷ = ±
√
d

c
.

Since d
x̂2 = b, and d

ŷ2 = c, the Hessian matrix simplifies to

∇2F =

[−2b 0
0 −2c

]
. (13)

Obviously this matrix is negative definite at the equilibrium

points (x̂, ŷ). The maximum of F = d{log |a| + 1
2
log( d2

bc
) −

1} = d{ 1
2
log(

|a|2d2

bc
) − 1}. If d = 1, then the maximum of

F = log |a| − 1
2
log(bc)− 1 = log

|a|√
bc

− 1.

In the next section, example 1 will be generalized to higher
dimensions.

3.1 A Gradient Dynamical System

In this section we analyze the dynamical system resulted from
the merit function (10). From Proposition 1, it follows that the
gradient can be expressed in terms of the matrices A,D,x, y as
follows:

∇G =

[
AyD(xTAy)−1 +Ay(xTAy)−1D − αBx

ATDx(yTATx)−1 +AT x(yTATx)−1D − αCy
]
.

(14a)
Thus a gradient dynamical system for maximizing G may be

expressed by

x′ = AyD(xTAy)−1 + Ay(xTAy)−1D − αBx
y′ = ATDx(yTATx)−1 +AT x(yTATx)−1D − αCy.

(14b)

Let (x(t), y(t)) be a solution of (14b) for t ≥ 0, then x(t)T x(t),
y(t)T y(t), x(t)TAy(t), x(t)TBx(t), and y(t)TCy(t) can be shown
to converge to diagonal matrices as t→ ∞.

For convenience, assume that α = 1 and let (x(t), y(t)) be
a solution of (14b) for t ≥ 0. Set Ā = limt→∞ x(t)TAy(t),
B̄ = limt→∞ x(t)TBx(t), and C̄ = limt→∞ x(t)TCx(t). In what
follows it will be assumed that Ā is invertible and that ĀT Ā has
distinct eigenvalues. Equation (14b) implies that

D + ĀDĀ−1 = B̄, (15a)

D + ĀTDĀ−T = C̄. (15b)

Since B̄ −D and C̄ −D are symmetric, it follows that ĀDĀ−1

and ĀTDĀ−T are symmetric, i.e.,

ĀDĀ−1 = Ā−TDĀT ,

ĀTDĀ−T = Ā−1DĀ.

After a few rearrangement, the last two equations yield

ĀT ĀD = DĀT Ā,

and
ĀĀTD = DĀĀT .

Since D is diagonal and all its eigenvalues are distinct, then ĀT Ā
and ĀĀT are diagonal:

ĀĀT = D1,

ĀT Ā = D2,

where D1 and D2 are diagonal matrices.
From these two equations, we have

ĀD1 = D2Ā.

Since Ā is assumed to be invertible, then ĀD1Ā−1 = D2 and
hence ĀD1Ā−1 = D2 = PD1PT , where P is a permutation
matrix. The last equation implies that

PT ĀD1 = D1P
T Ā.

Assuming that all eigenvalues of ĀĀT are distinct, it follows that

PT Ā = D3,

or equivalently
Ā = PD3,

where D3 is diagonal matrix. From the relation

ĀT Ā = D2 = D3P
TPD3 = D2

3 ,

it follows that

D3 =
√
D2,

and consequently

Ā = P
√
D2.

Additionally,
ĀĀT = D1 = PD2

3P
T .

Therefore,
D2 = PTD1P.

Next we show that both B̄ and C̄ are diagonal. Clearly,

B̄ = D + P
√
D2D

√
D−1

2 PT = D + PDPT .

Since PDPT is diagonal, B̄ = D + PDPT is also diagonal.
Similarly,

C̄ = D +
√
D2P

TDP
√
D−1

2 = D + PTDP,

is diagonal.
To check whether the equilibrium points (x̂, ŷ) of the system

(14) are maximizers for the function G, the Hessian matrixH(G)
evaluated at (x̂, ŷ) is negative definite. This matrix is obtain by
simplifying (8b) after a proper choice of E.

4 Simulation Results
In this section, we present an example that demonstrates the
behavior and the applicability of the proposed algorithms. In
this example we tested the proposed algorithm using the matrices
A ∈ IR9×7, B ∈ IR9×9, and C ∈ IR7×7. These are generated
using the following formulas:

A =
1

100

100∑
k=1

x(k)y(k)T ,

B =
1

100

100∑
k=1

x(k)x(k)T ,

C =
1

100

100∑
k=1

y(k)y(k)T ,

where x(k) and y(k) are vectors of sizes 9× 1 and 9× 1, respec-
tively. The vectors x(k) and y(k) are generated using the Matlab
function rand. The matrices A,B and C which are used in this
example are

A =0.3710 0.3653 0.3792 0.3878 0.4032 0.3628 0.3873
0.3289 0.3334 0.3542 0.3526 0.3611 0.3191 0.3525
0.3821 0.3567 0.3673 0.3753 0.3926 0.3518 0.3854
0.3560 0.3442 0.3732 0.3843 0.3825 0.3500 0.3674
0.3676 0.3660 0.3759 0.3902 0.4122 0.3586 0.3839
0.3575 0.3591 0.3702 0.3709 0.3881 0.3453 0.3782
0.3591 0.3606 0.3805 0.3806 0.3845 0.3524 0.3701
0.3904 0.3829 0.4118 0.4014 0.4215 0.3685 0.4142
0.3436 0.3371 0.3651 0.3552 0.3784 0.3460 0.3679
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The nine columns of the matrix B are

B=
0.5054 0.3536 0.3821 0.3772 0.3909 0.3719 0.3818
0.3536 0.4488 0.3508 0.3415 0.3538 0.3357 0.3413
0.3821 0.3508 0.4986 0.3742 0.3823 0.3742 0.3889
0.3772 0.3415 0.3742 0.5005 0.3784 0.3658 0.3703
0.3909 0.3538 0.3823 0.3784 0.5289 0.3967 0.4017
0.3719 0.3357 0.3742 0.3658 0.3967 0.4798 0.3714
0.3818 0.3413 0.3889 0.3703 0.4017 0.3714 0.4929
0.4228 0.3739 0.4034 0.3980 0.4114 0.3927 0.4050
0.3758 0.3282 0.3615 0.3747 0.3808 0.3598 0.3527

0.4228 0.3758
0.3739 0.3282
0.4034 0.3615
0.3980 0.3747
0.4114 0.3808
0.3927 0.3598
0.4050 0.3527
0.5597 0.3985
0.3985 0.4862

C =0.4663 0.3558 0.3652 0.3820 0.3767 0.3468 0.3720
0.3558 0.4638 0.3607 0.3609 0.3665 0.3457 0.3622
0.3652 0.3607 0.4997 0.3855 0.3920 0.3529 0.3834
0.3820 0.3609 0.3855 0.5190 0.3992 0.3614 0.3818
0.3767 0.3665 0.3920 0.3992 0.5269 0.3618 0.3930
0.3468 0.3457 0.3529 0.3614 0.3618 0.4574 0.3441
0.3720 0.3622 0.3834 0.3818 0.3930 0.3441 0.4911

The canonical correlations of the coherence matrix Ĉ =

B
−1
2 AC

−1
2 are 0.9563, 0.2371, 0.1738, 0.1380, 0.1296, 0.0895,

0.0412. Algorithm (14b) is applied with input matrices A, B, C,
as given and the diagonal matrix D is

D =23.0914 0 0
0 15.6121 0
0 0 6.9251

Euler method with stepsize α = 0.0615 is used to solve the dy-
namical system (14b). After 7,000 iterations x(k) and y(k) con-
verge so that

x’*A*y=-0.0000 -0.0000 -7.1165
-0.0000 -29.8604 0.0000
-5.2174 -0.0000 0.0000

x’*B*x= 30.0165 0.0000 0.0000
0.0000 31.2242 0.0000
0.0000 0.0000 30.0165

y’*C*y= 30.0165 0.0000 0.0000
0.0000 31.2242 0.0000
0.0000 0.0000 30.0165

The singular values of (xTBx)−.5(xTAy)(yTCy)−.5 are
0.9563, 0.2371, 0.1738. These are the largest three canoni-

cal correlations of Ĉ = B
−1
2 AC

−1
2 . It can be verified that

B̄ = C̄ = D + PDPT , where P =

[
0 0 1
0 1 0
1 0 0

]
.

5 Appendix
In this appendix, we list a number of results that are used in
proving some of the propositions of this work.

5.1 Gradient and Hessian Matrices
The gradient and Hessian matrices can be obtained from first
and second order differentials as the following lemma [11].

Lemma 3. Let φ be a twice differentiable real-valued function
of an n× p matrix. Then, the following relationships hold:

dφ(X) = tr(AT dX) ⇔ ∇φ(X) = A (A.1)

d2φ(X) = tr(B(dX)TCdX) ⇔ Hφ(X) =
1

2
(BT ⊗C +B ⊗ CT )

(A.2)

d2φ(X) = tr(B(dX)CdX) ⇔ Hφ(X) =
1

2
Krn(B

T ⊗C+CT ⊗B)
(A.3)

where d denotes the differential, and A, B, and C are matrices,
each of which may be a function of X. The gradient of φ with
respect to X and the Hessian matrix of φ at X are defined as

∇φ(X) =
∂φ(X)

∂X

Hφ(X) =
∂

(vecX)T

(
∂φ(X)

∂(vecX)T

)T

(A.4)

where vec is the vector operator and stands for the operation of
stacking the columns of a matrix into one column, and ⊗ denotes
the Kronecker product. The matrix Kpn denotes the pn × pn

commutation matrix; KT
pn = K−1

pn = Kpn and Kpm(A ⊗ C) =

(C ⊗A)Kqn, where A ∈ IRm×n and C ∈ IRr×q .

Proposition 4. Let D,A ∈ IRn×n be positive definite matrices
and assume that D is diagonal having distinct eigenvalues. If
AD = DA, then A is diagonal.

Proof: Assume that A = [aij ] and D = diag(μ1, · · · , μn), then
for each i, j we have aijμj = μiaij or (μj − μi)aij = 0. Thus
aij = 0 for i �= j, i.e., A is diagonal.

Proposition 5 [12]. Let B,D ∈ IRp×p and assume that D is
diagonal and all eigenvalues of D are distinct. If BD + DB is
diagonal, then B is diagonal.
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