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ABSTRACT

Canonical correlation analysis (CCA) can be used to find cor-
relating projections of two datasets with co-occurring sam-
ples. Instead of correlation, we would typically want to find
more general dependencies, measured by mutual information.
Variants of CCA based on non-parametric estimation of mu-
tual information have been proposed previously; they outper-
form traditional CCA for non-Gaussian data but require infea-
sible amounts of computation for already quite modest sample
sizes. We introduce a novel variant that uses a semiparamet-
ric estimate leading to a considerably faster algorithm. We
apply the method on searching for statistical dependencies
between multi-sensory stimuli and functional magnetic res-
onance imaging (fMRI) of brain activity– in contrast to using
regression on either of them.

Index Terms— Canonical correlation, component mod-
els, fMRI, mixture model, mutual information

1. INTRODUCTION

In fMRI analysis of brain signals related to natural stimula-
tion, both the brain signals and the stimuli are very complex
and difficult to analyze. Both contain variation that is not
interesting to the analyst. The interesting aspects are the de-
pendencies between the two datasets, and hence the analy-
sis should be focused on those. The same setup of searching
for statistical dependencies between datasets of co-occurring
samples recurs in many applications.

A classical approach to searching for dependencies is
to project the datasets onto lower-dimensional subspaces, in
which it is easier to estimate dependencies than in the original
high-dimensional spaces. When a projection is optimized to
maximize dependency, it discards variation that is not present
in the other dataset, while keeping the shared variation.
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The task of finding maximally correlating projections be-
tween two datasets can be solved by a classical method called
canonical correlation analysis (CCA). The method is fast and
robust, but for many applications correlation is too simple a
measure; it only measures linear dependency.

Replacing correlation with mutual information makes dis-
covery of more general types of dependency possible. How-
ever, mutual information cannot be computed as easily as cor-
relation, and we need to resort to approximations. One op-
tion is to empirically estimate the probability density in the
projection space, and estimate mutual information based on
the density estimate. Earlier methods [1, 2] have used non-
parametric Parzen-kernel estimates. We call these methods
dependent component analysis (DeCA). An alternative solu-
tion would be to consider nonlinear projections while keep-
ing correlation as the cost, e.g. by kernelizing CCA. Both
approaches find non-linear dependencies, but DeCA has the
advantage that linear projections can be interpreted in terms
of the original features.

The Parzen estimates are consistent and accurate, but
computationally demanding for large datasets. Replacing
the non-parametric density estimates with semiparametric
estimates should give comparable results while being scal-
able. We introduce a novel algorithm that uses a mixture of
Gaussians to estimate the density in the projection space. An
analogous method has been shown to improve efficiency in a
related task of discriminant analysis [3].

We applied the novel DeCA-variant to the task of find-
ing dependencies between measured brain activity and multi-
sensory stimuli. Following an earlier application of CCA to
the same task [4], we used a 2-step approach: First, spatially
independent patterns of brain activity were extracted from
fMRI data with independent component analysis (ICA) [5].
In the second step the new DeCA-variant was used to find
dependencies between the brain patterns and the stimuli.

2. METHOD

The task in DeCA is to find linear projections of two datasets,
X and Y, so that the mutual information between the pro-
jections sx = wT

x X and sy = wT
y Y is maximized. The

1737978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



objective is thus to maximize

I(sx, sy) =

∫ ∫
p(sx, sy) log

p(sx, sy)

p(sx) p(sy)
dsxdsy (1)

with respect to linear transformations wx and wy . Here sx

and sy are the random variables sx = wT
x x and sy = wT

y y,
and x and y are random vectors corresponding to data sets X

and Y. Mutual information has, however, two severe diffi-
culties as a cost function: It requires knowledge of the joint
probability density p(sx, sy), and it involves an integral over
the whole projection space. As a practical solution, we used a
mixture of Gaussians-based density estimate p̂(sx, sy), and
estimated the integral as an average over the observations.
That is, we maximized the objective function

Î(sx, sy) =
1

N

N∑
i=1

p̂(si
x, si

y)

p̂(si
x) p̂(si

y)
, (2)

where N is the number of observations.
In earlier works, p̂(sx, sy) has typically been a Parzen es-

timate, which is non-parametric. Hence, optimizing the cost
of Eq. (2) has been straightforward; derive the gradient of the
cost and use any standard optimization method to find a local
optimum. Here, we consider parametric estimates of the form

p̂(sx, sy) =
K∑

k=1

πk N ([sx; sy] |μk,Σk) , (3)

where N (x |μ,Σ) denotes the normal distribution with mean
μ and covariance matrix Σ evaluated at x. The πk repre-
sent the probabilities of the K mixture components. This
estimate has a set of parameters Θ that need to be learned,
Θ = {πk,μk,Σk}

K
k=1

. Hence, straightforward optimization
with respect to wx and wy is not possible.

We propose an alternating algorithm following the work
in [3]. Starting with some initial projections, we learn a mix-
ture of Gaussians in the projection space using the expectation
maximization (EM) algorithm. After learning the density esti-
mate, we optimize the projections wx and wy . The algorithm
then proceeds by alternating these two steps.

The objective function Eq.(2) can be easily differentiated,
so we can use gradient-based methods to learn the projections.
We used a conjugate gradient method, with the number of
iterations equal to the dimensionality of the parameter space.
The density estimate was always optimized until convergence
of the EM algorithm.

We optimized the components one at a time because den-
sity estimation in high-dimensional spaces is very difficult.
By using 1-dimensional projections we can estimate the joint
density p(sx, sy) in a 2-dimensional space, which can be done
accurately enough already with a reasonably small datasets.

After finding the first component, we can proceed to
search for the next maximally dependent component with
the following constraint: The projections on the consecutive
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Fig. 1. Running times of non-parametric DeCA (o) and mix-
ture of 20 Gaussians DeCA (*) in seconds as a function of the
number of data samples.

components should be independent of the projections on the
previous components in both spaces. In practice, search-
ing for a component that maximizes dependency with the
other dataset while minimizing dependency with the earlier
component(s) is difficult. We used an approximation, where
instead of full independency, we required the components to
be uncorrelated with the earlier projections, analogously to
how successive CCA components are defined. This can be
satisfied with a simple deflation procedure, as follows. After
extracting a component wx, we transformed the data by

X̄ = X

(
I −

1

wT
x XXT wx

XT wx wT
x X

)
(4)

(and analogously for Y), and searched for the next compo-
nent by applying the algorithm to X̄ and Ȳ. The procedure
can be continued up to the minimum of the X- and Y-space
dimensionalities, or until there are no significant dependen-
cies left between X̄ and Ȳ.

3. TECHNICAL VALIDATION

The main advantage of the proposed method, compared to
earlier DeCA methods, is in the computational speed. The
Parzen estimate used in the earlier works has a computa-
tional complexity of O(N2), and each iteration of a gradient-
based optimization algorithm requires evaluating the densities
again. A mixture model with K mixture densities has, how-
ever, only a complexity of O(NK) for evaluating the density
or the gradient with respect to the projections. We show in
Fig. 1 the computation times as a function of data size, N .
We also demonstrate the functionality of the DeCA variants
compared to CCA on an artificial dataset. The data consisted
of 10-dimensional data X and 7-dimensional data Y of 1000
samples, each dimension being uniform random noise except
in one of the dimensions, where there was a clear dependency
between X and Y, as shown in panel (a) of Fig. 2. CCA
could not find such non-linear dependency, whereas both
DeCA variants worked correctly.
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Fig. 2. (a) Shows a dependent but uncorrelated subspace
of the toy data. The CCA projection (b) completely missed
the dependency, whereas DeCA found the true projections.
(c) shows the result of the new mixture-based variant, but the
non-parametric variant produced an indistinguishable solu-
tion. In both figures x-axis represents the projection of dataset
X and y-axis the projection of dataset Y.

4. APPLICATION TO FMRI ANALYSIS

Natural stimuli are increasingly used in fMRI studies to im-
itate real-life situations. Consequently, it is no longer fea-
sible to assume single features of the experimental design
alone to account for the measured brain activity. Instead, rele-
vant combinations of stimulus features could explain the more
complex brain activation patterns.

We have earlier proposed a 2-step approach [4, 6], where
ICA was first used to identify spatially independent brain pat-
terns. As the second step, temporal dependencies between
stimuli and the brain patterns were detected using some CCA-
variant, like DeCA. The idea is to look for dependencies be-
tween combinations of stimulus features and the correspond-
ing combinations of brain patterns. The method differs from
regression analysis, which is based on pre-selected regressors.
In contrast to using regression on the ICA time-courses, we
searched for dependencies between stimuli and brain signals
without pre-specifying target classes, to automatically find the
most relevant stimulus combinations.

This framework has been studied in two earlier papers,
[4] and [6], one of which used non-parametric version of
DeCA [1] and the other CCA for the dependency exploration
step. We applied the new DeCA-variant to the data from
study [4] where the fMRI measurements originally come
from [7]. The preprocessed stimulus data and the result of
ICA for the fMRI data (1932 data points) were taken from
the earlier study without any modifications.

The original stimulation sequence consisted of 7 different
stimuli: 1 tactile stimulus, 3 visual stimuli containing hands,
faces or buildings, and 3 audio stimuli consisting of either
tone pips, a voice reading about history, or a voice giving gui-
tar fingering instructions. In [4], the original features of the
stimuli were augmented with six features, extracted from the
spectrogram of the actual auditory stimuli. The 13 stimulus
time courses were quite far from being normally distributed,
justifying the need for DeCA that does not make an implicit
global normality assumption like CCA. Performing these ex-

periments using non-parametric DeCA, on the other hand,
would have been computationally infeasible.

5. EXPERIMENTS

We initialized the projection vectors wx and wy to the first
PCA-components of the datasets X and Y, and initialized the
mixture estimate in the projection space as follows. The ini-
tial values of means μk and mixture probabilities πk were
determined by k-means separately in each projection space,
by using the centroids as initial means of the mixture com-
ponents and the proportions of cluster sizes as πk. The initial
covariance matrix Σk of each mixture component was set to a
diagonal matrix diag

(
σ2

x, σ2

y

)
containing the variances of the

initial projections sx and sy . Finally, the number of mixture
components was initially set to 5, but if a mixture component
was left empty during an EM-iteration, it was removed. The
full algorithm was run for 10 iterations.

A critical issue in analyzing small datasets is to avoid
overfitting. Already classical CCA suffers severely from
overfitting with small enough data, which shows as spuri-
ous canonical correlations. Here we assessed the quality
of the results by bootstrapping. DeCA (like CCA) identi-
fies the components only up to a sign, and to average over
a set of components obtained from the bootstrap replicates
we matched their signs with an algorithm resembling a 1-
component k-means (details omitted due to lack of space).

The statistical significance was tested with Wilcoxon
signed rank test compared to zero factor loadings. We used
the p-value threshold 0.01, corrected for multiple testing with
Bonferroni correction.

6. RESULTS

We were able to distinguish 8 individual significant DeCA
components, which show clear discriminative patterns, and
they can be roughly described as follows: Component 1 dis-
criminates sound related features from other senses, espe-
cially from tactile stimulus. Component 2 discriminates tone
pips and the related auditory features from speech. Compo-
nent 3 discriminates between the two different speech fea-
tures, history and instruction. Components 4–6 each repre-
sent one of the visual features buildings, faces and hands.
Component 7 discriminates between two auditory features,
skewness and mean. Component 8 represents the auditory
feature amplitude. In Fig. 3 , we show the factor loadings1

of components 1–3, i.e., the correlations between the DeCA
component and each of the original feature dimensions.

The main difference between results of DeCA and CCA
was that DeCA was able to find more components. Some of
the found DeCA components had counterparts in the CCA

1An alternative would have been to study the projection vectors directly,
but when there are within-dataset-correlations between the dimensions, the
projection vectors might be misleading.
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(a) DeCA component 1. All 13 features were significant.
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(b) DeCA component 2. Significant features were tones,
history, instruction, mean, std, skewness and kurtosis.
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(c) DeCA component 3. Significant features were
history, instruction and amplitude.

Fig. 3. Factor loadings of DeCA components 1–3 for the stim-
ulus features. In each caption we list the features that both
deviated from zero statistically significantly (P-value < 0.01)
and have factor loadings above 0.1 The gray bars illustrate
the experimental stimulus features and the white bars the ex-
tracted stimulus features. The dotted lines indicate the level
of one standard deviation between the bootstrap results.

results (DeCA components 1,2 and 4). But there were also
new ones; e.g. DeCA components 3, 7 and 8 discriminate
fine differences between auditory signals, which could not be
consistently distinguished with CCA.

7. DISCUSSION

We introduced an algorithm for finding linear projections of
two datasets, so that the projections have high mutual infor-

mation. The proposed method improves earlier solutions by
replacing non-parametric density estimators by mixtures of
Gaussians, resulting in an optimization algorithm that is lin-
ear instead of quadratic in the number of data points.

We applied the method to a time-paired dataset from an
earlier study. One of the datasets consisted of 13-dimensional
time-series description of the stimuli presented to test sub-
jects, and the other dataset of spatially independent brain pat-
terns produced from fMRI measurements by so-called reli-
able ICA approach [8]. We found 8 different components that
seem reasonable in terms of the stimulus features. Some of
the found combinations of brain patterns were already famil-
iar from the earlier study, and have there been interpreted to
be meaningful [4]. In that study, CCA found only 5 compo-
nents consistently from this data. DeCA was able to find more
dependencies that were not shown in terms of the correlation,
but still manifested themselves in mutual information.

We also showed with artificial dataset that the results of
the novel semiparametric version and non-parametric version
of DeCA are comparable and, indeed, can find dependency
structures when correlation is zero and CCA fails. The novel
variant was also verified to be considerably faster.
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