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ABSTRACT

Overcomplete independent component analysis (ICA) is a
challenge of ICA to estimate more sources from less
mixtures. The statistical properties of the sources such as
sparsity are often assumed to solve the problem. Other
available information about the sources such as waveform,
however, is scarcely used. Motivated by the fact that semi-
blind ICA in complete case can improve the potential of ICA
by incorporating source information, this paper proposes a
semi-blind algorithm for overcomplete ICA by explicitly
utilizing waveform information about some sources. An
approximate expectation-maximization (EM) algorithm is
explored to provide normal cost function of the semi-blind
algorithm while the prior information is utilized to form an
extended one. Computer simulations results demonstrate that
the proposed algorithm has much improved performance in
SNR, convergence speed, and elimination of order ambiguity
compared to the original EM algorithm.

Index Terms—Independent component analysis, semi-
blind ICA, overcomplete ICA, EM algorithm

1. INTRODUCTION

Independent component analysis (ICA) consists of
recovering M maximally independent sources from their N
observed mixtures without knowledge of the source signals
and the mixing parameters (usually A/ < N ). One challenge
of ICA is to recover more sources from less mixtures (i.e.
M > N ) since the estimates of sources are not unique even
if the mixing matrix is known. This is called overcomplete
ICA problem. Due to practical applications, overcomplete
ICA has been gaining more and more attention, some
algorithms have been proposed under certain assumptions
[1]-[7]. For example, most of the algorithms assumed that
the sources were sparse [2]-[5]. In addition, several
algorithms utilized other statistical properties of the sources
such as nonstationarity [6] and fourth-order cumulant [7].

In practice, other prior information about some sources
is often available and has been utilized by complete ICA
(M = N ) as extra constraints. This actually leads to what is
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called semi-blind ICA [8]-[12]. For example, the temporal
information about some sources was utilized to extract
sources of interest in a constrained ICA algorithm [8]. The
paradigm information was incorporated into the ICA
analysis of event-related functional magnetic resonance
imaging data [9]. The spatial topography of selected source
sensor projection was used as spatial constraints for the
fastICA algorithm [10], and geometric information exploited
in beamforming was used to constrain the separation of
convolutive speech [11]-[12]. As expected, semi-blind ICA
demonstrated considerable promise in further improving
ICA performance [8]-[12].

The semi-blind ICA, by far, has been developed mostly
for complete ICA but scarcely for overcomplete ICA. As
such, an approximate expectation-maximization (EM)
algorithm, which is an efficient overcomplete ICA algorithm
proposed by Zhong et al. in [3], was explored to incorporate
waveform information about some sources. Comparison to
the original EM algorithm was performed through
simulations to demonstrate performance of the proposed
semi-blind algorithm.

This paper is organized as follows. Section 2 briefly
introduces the original EM algorithm. Section 3 presents our
proposed semi-blind EM algorithm in detail. Section 4
consists of simulations and results which compare our
algorithm with the original EM algorithm. In Section 5 we
provide conclusion.

2. EM ALGORITHM

The approximate EM algorithm in [3] used the following
noisy mixing model:

Xx=As+g 1
where s =[s,,s,,...,s,,]' includes M independent sources,
X =[X,%,,...,Xy 1" denotes N observed mixtures (M > N ),
A is an NxM mixing matrix, and £:[gl,52,...,5N]T
includes N noise signals with zero mean and known
covariance matrix X . The sources are assumed sparse, the
distribution of which can thus be denoted by the following
Laplacian distribution:
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By maximizing the log-likelihood below,
L(s) = log{p(s|x, A)}

T

= 2{—%(3( —As)" I (x - As) + w(S)}+ ¢

t=1
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where ¢(s) = log{p(s)} , C is a constant irrespective to s,
T is the data length, the learning rule for estimating the
sources is obtained as follows [3]:

§ =84V, L 4)
where § is the estimate of s, k is the number of iteration,
n is the learning rate, V, denotes the gradient with respect
to § . Next, the mixing matrix A is learned by:

AR = {ixﬁTHi(H(ﬁ)' +§§T)} (5)

t=1

where H(S)=-V_V_L(8) is the Hessian of L(S).
3. PROPOSED ALGORITHM

3.1. Block diagram of the algorithm

Fig. 1 shows the block diagram of the proposed algorithm, in
which x,,x,,...,x, denote N mixed signals, §,...,5, are
estimates of M sources s,,s,,...,5,, . Assume that prior
information about L ( 1<L<M ) sources s,,...,5, is
available, #,...,r, are L reference signals for s,,...,s,
constructed from the prior information, whereas r,

J SRR

without
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are randomly generated references for s s
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prior information. g,(§,,r),i=1..,M,r= [rl,...,rM]T is a
closeness measure between an estimate s, and each
reference in r, and its maximal element is reached when a
reference corresponds to its source. By constraining learning
of s and A with g,(s,,r), the L sources s,,...,s, with prior
information are recovered in the same order as #,...,7; ,
the other

information will be recovered in random order.

whereas sources s without prior

LitoeeoSy

3.2. Basic algorithm

To incorporate prior information into the original EM
algorithm, a new cost function is formulated for the
proposed algorithm as follows:

J, =L(8)+G(S) ©6)
where L(8) is the original cost function of the EM algorithm,
G(8) is an extended part for incorporating prior information,

and is defined from the closeness measure g,(s,,r).
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Fig. 1. Block diagram of the proposed algorithm

Indeed, g,(s,,r) can be defined in different ways. Here

we use the correlation principle to utilize the waveform
information about the sources:

8 (§i’r) =E($r) = [E(S'irl )""5E(§irM)]T (7
Obviously, g,(s5,,r) has a maximal element when a

reference corresponds to a source signal. Based upon this
definition, we define a reasonable G(S) for estimating all of

the sources as

G(g):zpigi(‘ei’r)r gi(§i’r) ®)

i=1
where p, is a positive correction factor. To fully utilize
prior information, we learn p, for each of sources differently:
:{Zmaxgi (8,.r), maxg,(§.,r)=¢ o)
max g, (§i,r) <£.

where A is a positive constant, & is a threshold, these two

i

ﬂmingi(ﬁi,r),

parameters can be selected within (0, 1). As a result, the
contribution of G(8) in (6) is enhanced by a large p, when

learning of a specific source s, goes in a right direction.

By optimizing the new cost function with the steepest
descent method, we obtain a new learning rule for s as
follows:

$ =8 4 p[ AT (x - A8+ V.03 |+ V,GE)  (10)
where

V.G =2p,[ 8 (551)ss 8y (5u8) ] [EGD, s BT

A ~ T
~2p,[ 8 (8:1)s gy (8yo1) | 1
In the algorithm, no extra information about the mixing
matrix is needed, thus A is still learned by (5).

3.3. Order correction

Since an element of g,($,,r) will reach a maximum when a
reference corresponds to a source, the M estimated sources
can be readily divided into two groups according to the
values of g,(s,,r), i.e., L sources with prior information



(corresponding to L maxima of g,(s,,r) ) and the remainings.
This result can then be employed to adjust the order of the M
estimates, specifically, to recover the L sources §,...,5,
with prior information in the same order as #,...,7, , and to
recover the other sources s,,,...,5,, Wwithout prior
information in random order (refer to Fig. 1).

Based upon the original order of §,,...,5, (i.e., order of
the L maxima), the order correction can be done by:

§k+] — P§k+l
where P is an M x M permuted identify matrix:
P= [el,...,eL,eLH,...,eM]

The order of e,...,e, is the same as that of #,...,7,, the
position of element “1” in e,...,e, represents the original

(1n

order of §,,...,5, . As a result, we have

ak+l ~k+l1 A AA n T

T =P8 =[8,..,8,,8, 15 a8y ]
Note that we need to do column permutation for A by
A" = A*'P as well after correcting order for § .

3.4. Construction of the reference signals

The reference signals should be constructed based upon the
prior information and the closeness measure g,(s,,r). Here

we utilize waveform information about some sources, and
define g,(s,,r) using correlation criterion between an

estimate and a reference. Therefore, a reference can be any
signal having bigger correlation with its corresponding
source than with the other sources, i.e., the references can be
roughly constructed from the waveform information in
different ways. Typical references could be: (1) the rough
envelope of a source, (2) a set of pulses the distribution of
which corresponds to the main peaks of a source, (3)
rectangular waveform the amplitudes of which approximate
the rough polarity of a source, etc. Usually, the first kind of
references has the biggest correlation with the sources while
the third one has the smallest.

4. SIMULATIONS AND RESULTS

Some simulations are performed to evaluate the performance
of the proposed algorithm. One example presented below
used the three speech signals (sampled at 8kHz, 10000
intercepted samples) in [3] as the sources sy - 53, as shown in
Fig. 2. These signals are with silent segments sparsely
distributed and can be approximated by a Laplacian model.
Two mixed signals x; - x, are shown in Fig. 3.

Assume that the waveform information about s, and s5 is
available. We constructed two references r, and r, for s, and
s3 using the third kind of references (to represent more
general cases of rough references), and generated the
reference r; for s with uniformly distributed pseudo-random
values between 0 and 1. Fig. 4 shows the constructed 7| - r;
(only 50 samples are displayed for clarity).
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By running the proposed semi-blind EM algorithm
(A=001, £=04 ) and the original EM algorithm,
respectively, we obtained the three estimates by the two
algorithms, as shown in Fig. 5(a) and Fig. 5(b). We see that
the two sets of recovered signals are very close to the
original source signals in Fig. 2, but the estimates by the
proposed algorithm are much cleaner than those by the
original EM. In addition, the order of the three estimates by
the proposed algorithm is definite (2, 3, 1), i.e., the same as
that of 7, - »;, but the estimates order by the original EM
may change at different runs (here is 1, 2, 3).

-1 T |
0 5000 10000 O

Number of samples

-1
5000 10000 0 5000

10000
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Fig. 3. Two mixed signals x - x,
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Fig. 5. Comparison of two algorithms. (a) Three estimates (with definite
order 2, 3, 1) by the proposed algorithm utilizing waveform information
about s, and s3. (b) Three estimates by the original EM algorithm

To quantitatively compare performance of the two
algorithms, we computed the signal-to-noise ratio (SNR)
defined in [3] for the estimated signals. Table 1 shows the
results. We see that the proposed algorithm has much higher



SNR than the original EM by use of prior information. We
also compared the average SNR for all possible cases
utilizing two references and utilizing one reference. Table 2
has the results which further confirm the advantages of
incorporating prior information. In addition, when we
compare the average SNR for the proposed algorithm by
utilizing one reference with that by utilizing two references,
we can find that the proposed algorithm has increased SNR
when more prior information is used, e.g., the average SNR
increases about 3dB when one more reference is used.

Table 1 Comparison of SNR(dB) for three estimates by the proposed
algorithm utilizing waveform information about s, and s3 and by the
original EM algorithm

S S2 53
Proposed 12.25 10.19 12.93
EM 5.28 9.08 9.77

Table 2 Comparison of average SNR(dB) for three estimates by the
proposed algorithm (utilizing 1 reference and 2 references, respectively)
and by the original EM algorithm

S1 \Y) 53 average
lLref | 542 9.72 | 11.13 8.76
Proposed
2refs | 12.81 | 10.15 | 12.96 11.97
EM 5.28 9.08 9.77 8.04

In addition, simulations indicate fast convergence of the
proposed algorithm. Fig. 6 shows a comparison of SNR (for
estimate of s,) versus the number of iterations between the
proposed algorithm and the original EM algorithm. We can
see that the proposed algorithm converges at around 30
iterations whereas the EM algorithm converges at about 40
iterations. This may be achieved by the enhanced
contribution of the extended cost function in the proposed
algorithm when prior information is positively utilized.
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Fig. 6. Comparison of SNR(dB) (for estimate of s,) versus the number of
iterations between the proposed algorithm and the original EM algorithm
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5. CONCLUSION

We proposed a semi-blind EM algorithm by incorporating
waveform information about some sources into an
approximate EM algorithm for overcomplete ICA.
Simulation results demonstrate that the proposed semi-blind
algorithm has much improved performance in SNR,
convergence speed, and elimination of order ambiguity,
compared to the original EM algorithm. Therefore,
overcomplete ICA, similar to complete ICA, also benefits
from use of prior information.
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