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ABSTRACT
We address the duality between adaptive filtering in C and R2

and provide a comparison between the well understood dual

channel real valued least mean square (DCRLMS) algorithm

in R2 and the corresponding algorithms in C. These include

the complex LMS (CLMS) and the recently introduced aug-

mented CLMS (ACLMS), a widely linear algorithm designed

for the processing of noncircular complex valued signals. The

analysis shows that the standard CLMS and DCRLMS in gen-

eral provide different adaptive filtering solutions, whereas the

ACLMS and DCRLMS are isomoprhic and can be made equiv-

alent. The analysis is supported by simulations on noncircular

real world signals.
Index Terms— Widely linear modelling, augmented com-

plex least mean square (ACLMS), bivariate least mean square.

1. INTRODUCTION
The generality of complex valued processes considered in sta-

tistical signal processing are

◦ Complex by design, such as the symbols used in com-

munications, which are typically located equidistantly

on the unit circle in the z plane;

◦ Complex by convenience of representation (radar, sonar,

wind field) where two variables of different natures (speed

and direction in the case of wind) are combined into a

more compact representation.

Signals which are complex by design are usually circular,

that is, with rotation invariant distributions, and for their pro-

cessing there is a wealth of statistical signal processing tools.

On the other hand, processes made complex by convenience

of representation come from real world, and it is unlikely

that their statistics will obey standard distributions. Tools for

the processing of such noncircular signals are only emerging

[1, 2]. It is therefore natural to ask whether it is more conve-

nient to process such signals as two dimensional real valued

vectors, as this is much better understood.

The duality between two-dimensional real valued vectors and

complex numbers is usually addressed through the isomor-

phism between the fields R
2 and C. The one-to-one mapping

between a point in the complex plane x + jy ∈ C and a point

(x, y) ∈ R2, can be expressed as

z=[1 j]
[

x
y

]
and

[
z
z∗

]
=

[
1 j
1 −j

][
x
y

]
(1)

where the complex variable za = [z, z∗]T is called the “aug-

mented” complex variable.

These mappings can be used to establish the relationship be-

tween the statistics in R2 and C, and statistical signal process-

ing techniques operating in C have been considered as gener-

alizations of the corresponding techniques in R2 [3]. Thus,

for instance, probability distributions of complex variables

have been derived in terms of the corresponding distributions

of “composite” real variables w = (x, y) ∈ R2, whereas for a

(real or complex) column vector z, its covariance is given by

E[zzT ] in the real case and E[zzH ] in the complex case.

Recent development in the statistics of complex variable (called

the augmented complex statistics) show that treating proba-

bility distributions in C as simple generalizations of the cor-

responding distributions in R is not adequate [4], and for com-

plete second order statistical description both the covariance

C = E[zzH ] and pseudocovariance P = E[zzT ] should be

taken into account, to give the augmented covariance matrix

[5, 6]

Ca = cov (za(k)) = E
[
za(k)zaH(k)

]
=

[ C P
P∗ C∗

]
(2)

Consequently, linear stochastic models based on augmented

complex statistics should be linear in both z and z∗ and are

termed widely linear stochastic models. One such model is

the widely linear autoregressive (AR) model, given by

y(k) =
p∑

i=1

hiz(k − i) +
p∑

i=1

giz
∗(k − i) + n(k) (3)

where hi and gi are model coefficients and n is doubly white

complex Gaussian noise. Based on this model the augmented

complex least mean square (ACLMS) algorithm has been de-

veloped for linear adaptive filtering of noncircular signals,

and has found applications in communications and wind fore-

casting [7, 8, 9, 10].

As multichannel LMS algorithms are a standard in multichan-

nel adaptive filtering, our aim is to establish a correspon-

dence between a dual channel real LMS (DCRLMS) and the

ACLMS, and thus provide insight into the properties of ACLMS.

The analysis also illustrates the duality between the process-

ing in R
2 and C.
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2. FILTERING OF TWO–DIMENSIONAL SIGNALS

For convenience, consider the operation of a dual channel lin-

ear adaptive filter in the prediction setting

x̂(k) = aT (k)x(k) + bT (k)y(k)
ŷ(k) = cT (k)x(k) + dT (k)y(k) (4)

where a,b, c,d ∈ RL×1 are column vectors of filter coeffi-

cients, L denotes the filter length, x̂(k) and ŷ(k) are the pre-

dictions of channels x(k) and y(k) and

x(k) = [x(k − 1), . . . , x(k − L)]T

y(k) = [y(k − 1), . . . , y(k − L)]T

are the past samples from the x and y channel contained in

the filter memory.

On the other hand, the operation of a complex linear adaptive

filter is described by

x̂(k) = hT
r (k)x(k) − hT

i (k)y(k)
ŷ(k) = hT

i (k)x(k) + hT
r (k)y(k) (5)

where z(k) = x(k) + jy(k), h = hr(k) + jhi(k) ∈ CL×1 is

a column vector of filter coefficients, and subscripts (·)r and

(·)i denote respectively the real and imaginary part of a com-

plex quantity.

Based on (3), the operation of a widely linear adaptive filter is

described by ẑ(k) = hT (k)z(k)+gT (k)z∗(k) = qT (k)za(k)
or in an expanded form

x̂(k)=
(
hr(k) + gr(k)

)T
x(k) +

(
gi(k)− hi(k)

)T
y(k)

ŷ(k)=
(
hi(k) + gi(k)

)T
x(k) +

(
hr(k)− gr(k)

)T
y(k) (6)

From (4) and (5), the I/O relations of a dual channel adaptive

filter and a standard complex adaptive filter are equivalent for

a(k) = hr(k) b(k) = −hi(k)
c(k) = hi(k) d(k) = hr(k) (7)

This is also clear from the isomorphism of R
2 and C in (1).

For fixed coefficient vectors, the standard complex valued fil-

ter can therefore be considered a constrained version of the

dual channel real filter.

From (4) and (6), the I/O relations of a dual channel real adap-

tive filter and a widely linear complex adaptive filter are iden-

tical for

a(k) = hr(k) + gr(k) b(k) = gi(k)− hi(k)
c(k) = hi(k) + gi(k) d(k) = hr(k)− gr(k) (8)

or eqivalently

hr(k) =
1
2

[a(k) + d(k)] hi(k) =
1
2

[c(k) − b(k)]

gr(k) =
1
2

[a(k)− d(k)] gi(k) =
1
2

[c(k) + b(k)] (9)

We shall now establish the duality between the corresponding

stochastic gradient learning algorithms for the real and com-

plex adaptive filters considered.

3. DYNAMICS OF THE LEARNING ALGORITHMS

In the prediction setting, the teaching signals for the x and y
channel are respectively dx(k) = x(k) and dy(k) = y(k) and

the output errors at the x and y channel of the filter are defined

as

ex(k) = x(k)− aT (k)x(k) − bT (k)y(k)
ey(k) = y(k)− cT (k)x(k) − dT (k)y(k) (10)

When it comes to the Wiener solution, the optimal weight

vector for the dual channel real filter is calculated based on

the 2L× 2L correlation matrix

R = E

{[
x(k)xT (k) x(k)yT (k)
y(k)xT (k) y(k)yT (k)

]}
(11)

The augmented correlation matrix Ca in (2) is also 2L × 2L
dimensional, but with complex coefficients, whereas the cor-

relation matrix of a standard complex filter is L × L dimen-

sional and with complex coefficients.

3.1. Weight updates

Within the stochastic gradient adaptive filtering setting, the

cost function for the dual channel real valued least mean square

(DCRLMS) algorithm is given by

J = J (a,b, c,d) =
1
2
(
e2

x(k) + e2
y(k)

)
(12)

and is equivalent to the cost function for the CLMS and ACLMS

J = J(h,g) =
1
2
e(k)e∗(k) =

1
2
(
e2

r(k) + e2
i (k)

)
(13)

where ex(k) and ey(k) are given in (10) and er(k) and ei(k)
are the real and imaginary components of the output error of

complex filters e(k) = er(k)+jei(k). For the complex filters,

for convenience denote ex(k) = er(k) and ey(k) = ei(k).
Since neither x(k) or y(k) are generated through the filter,

coefficient updates of the dual channel real LMS (DCRLMS)

algorithm are calculated similarly to the standard LMS and

are given by [11]

a(k + 1) = a(k) + Δa(k) = a(k) + μex(k)x(k)
b(k + 1) = b(k) + Δb(k) = b(k) + μex(k)y(k)
c(k + 1) = c(k) + Δc(k) = c(k) + μey(k)x(k)
d(k + 1) = d(k) + Δd(k) = d(k) + μey(k)y(k) (14)

CLMS vs DCRLMS. We can express the standard complex

least mean square algorithm, given by [12]

h(k + 1) = h(k) + μe(k)z∗(k) (15)

in the same form as the DCRLMS (14), to give

hr(k + 1) = hr(k) + μ [ex(k)x(k) + ey(k)y(k)]
hi(k + 1) = hi(k) + μ [ey(k)x(k) − ex(k)y(k)] (16)
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that is, unlike the channels a(k), . . . ,d(k) within DCRLMS,

the real and imaginary parts of the filter coefficient vector,

hr(k) and hi(k), are updated based on both the errors from

the x and y channels and the tap inputs x(k) and y(k). Denote

the learning rate for the DRCLMS by μR and the learning

rate for CLMS by μC , then from (14)–(16) and by taking into

account (7), we have1

Δhr(k) = 2
μC

μR
Δhr(k)

Δhi(k) = 2
μC

μR
Δhi(k) (17)

The CLMS and DCRLMS are therefore equivalent only when

the rather stringent relation (7) is satisfied and the learning

rate of CLMS is set to half the rate of DCRLMS.

ACLMS vs DCLMS. The weight updates for the ACLMS

algorithm are given by [7, 9, 10]

h(k + 1) = h(k) + μhe(k)z∗(k)
g(k + 1) = g(k) + μge(k)z(k) (18)

For μh = μg = μC , the ACLMS update can be cast into the

same form as the updates for DCRLMS (14), to give

hr(k + 1) = hr(k) + μC

[
ex(k)x(k) + ey(k)y(k)

]
hi(k + 1) = hi(k) + μC

[
ey(k)x(k)− ex(k)y(k)

]
gr(k + 1) = gr(k) + μC

[
ex(k)x(k) − ey(k)y(k)

]
gi(k + 1) = gi(k) + μC

[
ey(k)x(k) + ex(k)y(k)

]
(19)

From (8), (9), (14) and (19), and by expressing the terms in

the square brackets via the updates of the coefficient vectors

within the DRCLMS, we can see that, for instance

Δhr(k) =
μC

μR

(
Δa(k) + Δd(k)

)
= 2

μC

μR
Δhr(k)

The dual channel real adaptive filter and the widely linear

complex adaptive filter, trained with the corresponding learn-

ing algorithms DCRLMS and ACLMS, are therefore equiv-

alent when the stepsize of the DCRLMS is twice the step-

size of ACLMS, that is the ACLMS is twice faster than the

DCRLMS. We can conclude that in the stochastic gradient

setting, widely linear complex valued adaptive filters are iso-

morphic to dual channel real valued adaptive filters.

4. SIMULATIONS

To support the findings, simulations were conducted for a lin-

ear stable circular complex AR(4) process, noncircular and

nonlinear complex Ikeda map, and real world noncircular com-

plex wind signal. The AR(4) process was generated based on

z(k) = 1.79z(k− 1)− 1.85z(k− 2)
+1.27z(k− 3)− 0.41z(k − 4) + n(k) (20)

1From (14) we have ex(k)x(k) = Δa(k)/μR, ex(k)y(k) =
Δb(k)/μR , ey(k)x(k) = Δc(k)/μR ,and ey(k)y(k) = Δd(k)/μR .

where n(k) is complex, doubly white Gaussian noise with

variance σ2 = 1. The Ikeda map chaotic signal is given by

x(k + 1) = 1 + u (x(k) cos[t(k)]− y(k) sin[t(k)])
y(k + 1) = u (x(k) sin[t(k)] + y(k) cos[t(k)]) (21)

where u is a parameter, typically u = 0.8, and t(k) = 0.4 −
6

1+x2(k)+y2(k) . The wind signal was recorded by Windsonic,

a 2D ultrasonic anemometer produced by Gill Instruments.

All the test signals were made complex, for instance, in the

case of wind v = vejΦ, where v denotes the wind speed and

Φ the direction.

Properties of the AR(4) and Ikeda test signals in terms of

complex circularity are illustrated in Figure 1(a) and Figure

1(b), whereas their corresponding covariance and pseudoco-

variance functions are given in Figure 1(c) and Figure 1(d).

Observe the circularly symmetric shape of the distribution
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(a) Complex AR(4) process
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(b) Complex Ikeda map
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(c) Complex AR(4) process
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Fig. 1. Top: Circularity via “real–imaginary” scatter plots.

(a): circular AR(4) signal; (b): noncircular chaotic Ikeda sig-

nal. Bottom: Noncircularity via pseudocovariance (c): circu-

lar AR(4) signal; (d): noncircular chaotic Ikeda signal.

for the AR(4) signal or equivalently the vanishing pseudoco-

variance. The wind segment considered was also noncircular,

with non–zero pseudocovariance; for more detail see [7].

Simulations were performed in a one step ahead prediction

setting and the performance measure was the standard predic-

tion gain

Rp = 10 log
σ2

z

σ2
e

(22)

where σ2
z and σ2

e are respectively the estimated variance of

the output and the prediction error. Table 1 summarizes the

prediction gains for the above classes of signals. It can be

seen that, since standard CLMS is designed for the adaptive
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Table 1. Prediction gains Rp for the various classes of signals

Algorithm AR4 Ikeda Wind
DCRLMS 5.8423 3.9733 13.2604

CLMS 6.6380 2.4278 14.2941
ACLMS 6.6096 4.0330 14.8926

DCRLMS (double μ) 6.6096 4.0330 14.8926

filtering of circular complex signals, its performance for the

AR(4) process was as good as that of ACLMS, whereas its

performance for the noncircular Ikeda signal and the com-

plex wind signal was worse than that of the widely linear

ACLMS. When the same learning rate was used among all

the algorithms, in general, the DCRLMS did not have advan-

tage over the complex valued algorithms. However, when the

DCRLMS had the learning rate twice the size of the learning

rate of the complex algorithms, its performance was identical

to that of ACLMS. The ALCMS outperformed CLMS for the

noncircular Ikeda and wind signals, as by design, it accounts

for complex noncircularity.

5. DISCUSSION AND CONCLUSIONS

The analysis and simulations have shown that

◦ The dual channel real least mean square (DCRLMS)

and the augmented complex LMS (ACLMS) are iso-

morphic and provide a different filtering solution to that

obtained by CLMS. The adaptive widely linear com-

plex filter and the dual channel real filter are identical

when the learning rate of DCRLMS is twice the size of

the learning rate of ACLMS;

◦ The CLMS has half the number of coefficients as com-

pared to DCRLMS and ACLMS; it therefore converges

faster, however, its optimal Wiener solution is different

from that for ACLMS and DCRLMS;

◦ DCRLMS simplifies into CLMS when the constraints

a = d and b = −c are imposed on the parameters (see

equation (7)), while ACLMS degenerates into CLMS

for circular data when g = 0.

The overall conclusion of this work is that although standard

adaptive filtering algorithms in R
2 and C, that is CLMS and

DCRLMS, provide the same solutions only as a special case,

the stochastic gradient adaptive filtering algorithm based on

augmented complex statistics (ACLMS) gives effectively the

same solution as the DCRLMS, the difference being the scal-

ing between the corresponding learning rates.
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