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ABSTRACT

We develop a framework to detect when certain sounds are present
in a mixed audio signal. We focus on the regime where out of a large
number of possible sounds, a small but unknown number are com-
bined and overlapped to yield the observed signal. To infer which
sounds are present, we attempt to decompose the observed signal as
a linear combination of a small number of sources. To encourage
sparse solutions with this property, we balance the modeling errors
from individual sources against an �1-norm penalty of the type used
in basis pursuit and regularized linear regression with grouped vari-
ables. Our approach can be viewed as a novel generalization of basis
pursuit in two ways: first, with a dictionary of fixed size, we attempt
to model acoustic waveforms of potentially variable duration; sec-
ond, for dictionary entries, we do not store basis vectors representing
static templates, but the coefficients of autoregressive models that
characterize the acoustic variability of individual sources. We derive
the required optimizations in this framework and present experimen-
tal results on combinations of periodic and aperiodic sources.

Index Terms— Signal detection, Machine learning, Sparsity

1. INTRODUCTION

In this paper we consider the problem of detecting when certain
sounds are present in a mixed audio signal. The problem arises in
many settings, but here we focus on the particular regime that seems
most relevant to the indexing and annotation of large digital audio
libraries. For each recording in this library, we imagine that out of
a large number of possible sounds, a small but unknown number are
present and possibly overlapping in the observed signal. The goal in
this application is to tag and index each recording by the sounds it
contains. With this goal in mind, we develop a theoretical framework
for the sparse decomposition of mixed audio signals and present pre-
liminary but positive results demonstrating its feasibility.

The problem we consider in this paper is related to the prob-
lem of source separation, or the “cocktail party” problem, in which
the goal is to recover the individual sources from a mixed audio sig-
nal. Models of source separation have been studied in many different
communities. Researchers in blind source separation do not assume
prior knowledge of individual sources, but merely exploit their sta-
tistical independence. However, popular methods such as indepen-
dent components analysis typically assume the availability of mul-
tiple microphone recordings [1]. Researchers in machine learning
attempt to estimate the statistics of individual sources from training
data, then decompose mixed signals by performing probabilistic in-
ference in a generative model. With sufficient training data, such
methods have yielded successful results in source separation from

only single microphone recordings [2]; however, the complexity of
exact inference scales exponentially with the number of presumed
sources [3]. Finally, researchers in computational auditory scene
analysis (CASA) attempt to build models that mimic the workings of
human audition, exploiting the same psychoacoustic cues (e.g., har-
monicity, onsets/offsets, binaural differences) as human listeners [4].
Ultimately, these models could be expected to achieve human levels
of performance, but they are currently limited by our incomplete un-
derstanding of human audition.

Compared to previous studies, our approach starts from differ-
ent assumptions and works toward different goals. We assume prior
knowledge of a large number K of possible sources and seek to
identify which k�K of these sources occur in single microphone
recordings. Though the model we propose can be used for source
separation, our main goal is not separation, but detection. For this
problem, our main contribution is to propose a framework whose
required optimizations scale efficiently with the number of possi-
bly active sources. In particular, our approach avoids an exponential
search through all possible K!/(k!(K−k)!) combinations of sources.

Our approach can be viewed as an extension of previous work
on basis pursuit [5]. The problem in this work is to reconstruct a
vector of fixed length from a small number of basis vectors in an
overcomplete dictionary. In basis pursuit, a sparse decomposition is
achieved by balancing the reconstruction error against an �1-norm
penalty on the linear reconstruction coefficients. The penalty serves
as a regularizer, favoring sparse solutions. The required optimization
is convex, with no local minima, and it scales efficiently with the
dictionary size.

The problem we study differs from the problem of basis pursuit
in two crucial respects. First, with a dictionary of fixed size, we are
attempting to reconstruct acoustic waveforms of potentially variable
duration. Second, we cannot model individual sources by simple
static templates because they themselves exhibit many degrees of
variability besides amplitude (e.g., duration, phase, timbre). To han-
dle these differences, we have adapted the basic ideas behind basis
pursuit to our setting, building also on recent work for mixtures of
periodic sources [6]. Like basis pursuit, our approach computes a
sparse decomposition of mixed signals in terms of their constituent
sources, the possibilities of which are catalogued by a large dictio-
nary. In our approach, however, the entries in this dictionary are not
static templates, but autoregressive models whose parameters char-
acterize the acoustic properties of different sources, as well as their
degrees of variability.

This paper is organized as follows. In section 2, we begin by re-
viewing basis pursuit then show how its basic ideas can be extended
to our setting. Our formulation of the problem balances the model-
ing errors from individual sources against an �1-norm penalty of the
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type used in regularized linear regression with grouped variables [7].
We derive the required optimizations in our framework and describe
their efficient solution by group Lasso and block coordinate descent
algorithms [8]. In section 3, we present the results of experiments
on mixtures of both periodic and aperiodic sources. Finally, in sec-
tion 4, we conclude by listing several directions for future work.

2. MODEL

2.1. Review of basis pursuit

Basis pursuit (BP) is a popular method for decomposing a signal
into an optimal superposition of dictionary elements [5]. In par-
ticular, denoting the signal by �x and the dictionary elements by
{�si}K

i=1, BP attempts to compute a sparse set of (scalar) linear
coefficients {βi}K

i=1 such that:

�x =
KX

i=1

βi�si. (1)

In the usual regime of interest, the dictionary is overcomplete: that
is, the number of dictionary elements K exceeds the dimensionality
of the signal �x. Of the many decompositions satisfying eq. (1), BP
favors the sparse decomposition that minimizes:

min
KX

i=1

|βi| subject to �x =
KX

i=1

βi�si. (2)

The optimization in eq. (2) minimizes the �1-norm of the linear coef-
ficients subject to the constraint in eq. (1). Because the optimization
is convex, it has no local minima.

BP models the observed signal by an additive combination of
dictionary elements with varying amplitudes. This model is very
well suited to data compression using Fourier and/or wavelet dic-
tionaries. However, it is not well suited to analyzing mixed audio
signals in terms of sources from naturally occurring sounds. These
sounds are likely to vary not only in terms of amplitude from one re-
alization to the next, but also in terms of duration, phase, and timbre.
To represent these variations explicitly by different dictionary ele-
ments would explode the dictionary size. We discuss a way around
this problem in the next section.

2.2. Extension to autoregressive models

We extend basis pursuit by using autoregressive models to parame-
terize the variability of individual acoustic sources. In particular, we
imagine that waveforms {sit}T

t=1 from the ith source approximately
satisfy the mth order linear recursion relation:

sit ≈
mX

τ=1

αiτ sit−τ . (3)

Strictly speaking, the above equation is only defined for t>m since
the waveform {sit}T

t=1 is only defined for t>0. The particular real-
ization of the ith source’s waveform is determined by the m initial
conditions to the recursion relation which we denote by {uit}m−1

t=0 .
Eq. (3) can be extended to all times t by making the identification:

sit = ui|t| for t ≤ 0. (4)

Note that each dictionary entry models an m-dimensional family of
signals in which the initial conditions can not only parameterize vari-
ations in amplitude (by scaling uit), but also variations in phase (by

shifting uit) and timbre (by reweighting uit). Finally, signals of vari-
able duration T are accommodated simply by evolving the recursion
relation in eq. (3) for different numbers of time steps.

In this paper, we assume that the m linear coefficients {αiτ}m
τ=1

of each source’s autoregressive model are known a priori and stored
as one of the K entries in our dictionary. With this dictionary in
hand, our goal is to compute sparse decompositions of mixed audio
signals {xt}T

t=1 in terms of a few (k � K) active sources. For this
problem, we propose the following optimization:

min
s,u

(
1

2

KX
i=1

TX
t=1

“
sit −

mX
τ=1

αiτ sit−τ

”2

+ γ
KX

i=1

‖ui‖2
)

subject to xt =
KX

i=1

sit and sit = ui|t| for t ≤ 0.

(5)

The optimization is to be performed over all K source waveforms
{sit}T

t=1 and initial conditions {uiτ}m−1
τ=0 . Most of the terms in the

optimization are already familiar. The first term measures the fidelity
of each source to its autoregressive model. The constraints enforce
the identification in eq. (4), as well as the fact that the sum of the
sources must reproduce the observed signal. The novel term in the
cost function is the �1-norm penalty on the �2-norm of each source’s
initial conditions:

KX
i=1

‖ui‖2 =
KX

i=1

vuutm−1X
τ=0

u2
iτ . (6)

This term originates in previous work on sparse decompositions of
mixtures of periodic sources [6]. It favors sparse solutions in which
many sources have zero excitation (i.e., all zero initial conditions,
with uiτ = 0 for all τ ); we interpret such sources as inactive. The
two terms measuring modeling error and sparsity are balanced by
the regularization parameter γ > 0.

2.3. Efficient optimization

The optimization in eq. (5) appears considerably more complicated
than the optimization for BP in eq. (2). In particular, whereas BP
merely computes a scalar amplitude βi for each source, our approach
computes a vector of initial conditions {uiτ}m−1

τ=0 and an extended
waveform {sit}T

t=1. The extra complexity arises from the expres-
siveness of our approach, which explicitly models the potential vari-
abilities of each source as opposed to representing them by fixed
basis vectors. Though more complex than BP, the required optimiza-
tion can be massaged into a simple tractable form which we describe
in this section.

The first step to optimize eq. (5) is to eliminate the variables
{sit}t>0 representing source waveforms. To do so, we introduce
a Lagrange multiplier λ enforcing the sum constraint, thereby ob-
taining an unconstrained, continuously differentiable quadratic min-
imization over the variables {sit}t>0 and λ. We then eliminate these
variables by expressing their optimal values in terms of the source
initial conditions {uiτ}m−1

τ=0 . The final result of this derivation leaves
an unconstrained optimization to be performed over the source ini-
tial conditions. After some algebra, the remaining cost function (up
to an additive constant) can be written in the form:

L(u) =
1

2
‖Y − Zu‖22 + γ

KX
i=1

‖ui‖2, (7)
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Fig. 1. Precision and recall results from analyzing signals containing a single aperiodic source (left) and a mixture of five aperiodic sources
(right). See text for details.

where the variable u is the concatenation of the variables uiτ across
all sources and lags, and Y and Z are matrices expressed in terms of
the observed signal xt and dictionary coefficients αiτ .

We briefly discuss how to minimize L(u) using block coordinate
relaxation methods [8] and ideas developed for group LASSO prob-
lems [7]. Basically, we select one set of initial conditions uj from
{ui}K

i=1 and minimize L(u) with respect to these variables while
holding all others fixed. We then iterate this procedure over all sets
of initial conditions and repeat this loop until reaching the minimum
of L(u). In the key innermost step of this loop, we “shrink” uj and
set it to zero if doing so satisfies:

‖Zj
�(Y − Zu)‖2 ≤ γ, (8)

where the other components of u are held fixed to their current values
while uj is set to zero, and where Zj is a matrix of size T × m
derived from the jth sub-block of the matrix Z. On the other hand,
if the above condition is not satisfied, then we update uj to a new
non-zero value that minimizes the stationarity condition:

Zj
�(Y − Zu) =

γuj

‖uj‖2 . (9)

Though nonlinear, this equation is straightforward to solve. In par-
ticular, simple algebra yields a one-dimensional nonlinear equation
for the magnitude ‖uj‖2 (which can be solved by Newton’s method);
finally, given this magnitude, eq. (9) reduces to a linear set of equa-
tions for uj .

2.4. Special case: periodic signals

Our approach builds on previous work for computing sparse decom-
positions of mixtures of periodic sources [6]. Specifically, this ear-
lier work considered periodic sources whose periods were integer
multiples of the sampling resolution. Such sources obey the simple
recursion relation sit = sit−τi , where τi is the integral period of
the ith source. Experiments showed that this approach was success-
ful at recovering periodic sources from a mixed audio signal.

Our approach in this paper is based on autoregressive models
satisfying the more general recursion relations in eq. (3). Within this
framework, we can also model periodic sources with non-integer pe-
riods. In particular, for such sources, we can approximate the wave-
form’s value at any arbitrary point in one cycle by an interpolation
of its values in the preceding cycle. We develop this approximation
by considering a single periodic source {st}T

t=1 with non-integer
period τ . (Here, for simplicity, we drop the index indicating its en-
try number in the dictionary.) Let {τj}3j=0 denote the four integers
closest in value to τ . Then we seek linear recursion coefficients such
that:

st ≈
3X

j=0

ατj st−τj . (10)

Our approach here is to compute the coefficients ατj that estimate st

from a cubic interpolation of its “nearby” values in the preceding
cycle at times t− τj . Let Δj = t− τj denote the lags which appear
in the recursion relation, eq. (10). The coefficients which estimate st

by cubic interpolation can be found by straightforward algebra. They
are given by:

2
64

ατ0

ατ1

ατ2

ατ3

3
75 =

2
664

1 1 1 1
Δ0 Δ1 Δ2 Δ3

Δ2
0 Δ2

1 Δ2
2 Δ2

3

Δ3
0 Δ3

1 Δ3
2 Δ3

3

3
775
−1 2

64
1
0
0
0

3
75 . (11)

Note that the recursion coefficients in these autoregressive models
depend only on the period and the sampling rate (as opposed to any
details of the periodic signals themselves). Higher-order interpola-
tions can also be efficiently computed, though so far in our work we
have not found them necessary.

3. EXPERIMENTAL RESULTS

We performed many sets of experiments on mixed signals contain-
ing aperiodic and periodic sources. All experiments were performed
by analyzing 100 msec windows of signal sampled at 22050 Hz. To
study the effect of varying signal-to-noise ratio (SNR), we corrupted
the mixed signals by different levels of Gaussian noise. For each
experiment, we optimized eqs. (5) and (7) and interpreted non-zero
initial conditions {uiτ} for the ith source as a finding that the source
was active. Within each set of experiments, we tuned the regulariza-
tion parameter γ in eq. (5) to achieve the best average performance,
which generally consisted of balancing the errors in precision and
recall. For the experiments with single sources, we also report the
classification performance assuming that the signal contains exactly
one source and labeling it by whichever autoregressive model has
the lowest fitting error—that is, without considering other sources in
the decomposition. At high SNRs, this number may be viewed as an
upper bound on the achievable results for precision and recall.

3.1. Mixtures of aperiodic sources

Our first experiments focused on mixtures of aperiodic sources,
which we synthesized as follows. First, we constructed a dictio-
nary of K = 60 sources, with each source parameterized by an
autoregressive model of order m = 32. We randomly sampled the
coefficients {αiτ} in eq. (3) from a normal distribution with zero
mean and unit variance. The coefficients for each model were then
rescaled so that each model was stable and its predictions would not
diverge over time. We generated individual sources by randomly
sampling initial conditions for their autoregressive models and then
computing waveforms by evolving their recursion relations.
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Fig. 2. Precision and recall results from analyzing signals containing a single musical note (left) and a mixture of five musical notes (right).
See text for details.

We conducted two sets of experiments on aperiodic sources. In
the first set, the mixed signals consisted only of a single source plus
Gaussian noise. In the second set, the mixed signals consisted of a
randomly chosen combination of five different sources plus Gaussian
noise. We averaged our findings over 6000 experiments for single
source identification (100 for each source) and 30000 experiments
for mixtures of five sources. Fig. 1 shows the results in terms of pre-
cision, recall, and classification. On the whole, the results show that
even from short 100 msec windows of observed signal, our approach
often identifies the correct aperiodic sources and exhibits some ro-
bustness to noise as well.

3.2. Mixtures of musical notes

Our next experiments focused on mixtures of periodic signals de-
rived from samples of musical instruments. For these experiments,
we constructed a dictionary of K = 60 autoregressive models for
periodic sources, using the cubic interpolation scheme described in
section 2.4. The periods in these models corresponded to the notes
C2–B6 on the musical scale. The instrument samples were taken
from a public database [9]; we experimented with 100 msec clips of
sampled notes from the piano, saxophone, flute, trumpet, and violin.

We conducted two sets of experiments on periodic sources. In
the first set, the mixed signals consisted only of a sampled note from
one instrument. The left panel of Fig. 2 shows the precision, recall,
and classification results for these experiments. The bars represent
results averaged over the sampled notes for each instrument: 60 for
piano, 32 for saxophone, 37 for flute, 36 for trumpet, and 30 for vi-
olin. The results show that single musical notes are generally identi-
fied correctly even with instrument-independent models of idealized
periodic sources. Most errors in these experiments were octave er-
rors, as generally to be expected from results in pitch estimation.

In the second set of experiments, the mixed signals consisted of
a randomly chosen combination of five different notes. We experi-
mented with three different types of combinations: (i) random com-
binations of five notes, with one note sampled from each of the five
available instruments; (ii) a five-finger chord on the piano, with notes
that spanned at most two octaves (e.g., C4–C6); and (iii) a combina-
tion of five synthesized (perfectly periodic) sources with frequencies
on the musical scale. The right panel of Fig. 1 reports averaged re-
sults over 30000 random combinations of types (i) and (iii) and all
29988 possible combinations of type (ii). The performance is best
on the synthesized sources and worst (though still far better than
chance) on the ensembles of notes from five different instruments.

4. CONCLUSION

In this paper we have proposed a framework for detecting sounds in
mixed audio signals. Our framework extends basis pursuit by us-

ing autoregressive models to characterize the acoustic properties of
different sources, as well as their degrees of variability. We demon-
strated its feasibility for analyzing of mixtures of aperiodic and peri-
odic sources. Compared to previous work on source separation, our
framework was conceived to work in a somewhat different regime,
where combinations of many possible sources must be considered.

Clearly, many further improvements could be imagined to the
basic framework sketched here. In future work, we plan to explore
algorithms for learning stable autoregressive models from sampled
sounds and for integrating the inferences about active sources across
multiple analysis frames. We are also interested in principled ways
of setting the regularization parameter γ. Finally, we hope to assem-
ble large dictionaries of diverse sounds and apply our approach to
web-scale problems in audio information retrieval.
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