
DNA CODING USING FINITE-CONTEXT MODELS AND ARITHMETIC CODING

Armando J. Pinho, António J. R. Neves, Carlos A. C. Bastos and Paulo J. S. G. Ferreira

Signal Processing Lab, DETI / IEETA
University of Aveiro, 3810–193 Aveiro, Portugal

ap@ua.pt / an@ua.pt / cbastos@ua.pt / pjf@ua.pt

ABSTRACT

The interest in DNA coding has been growing with the avail-
ability of extensive genomic databases. Although only two
bits are sufficient to encode the four DNA bases, efficient
lossless compression methods are still needed due to the size
of DNA sequences and because standard compression algo-
rithms do not perform well on DNA sequences. As a result,
several specific coding methods have been proposed. Most of
these methods are based on searching procedures for finding
exact or approximate repeats. Low order finite-context mod-
els have only been used as secondary, fall back mechanisms.
In this paper, we show that finite-context models can also be
used as main DNA encoding methods. We propose a cod-
ing method based on two finite-context models that compete
for the encoding of data, on a block by block basis. The ex-
perimental results confirm the effectiveness of the proposed
method.

Index Terms— DNA coding, source coding, finite-
context modeling, bioinformatics, arithmetic coding.

1. INTRODUCTION

Recently, and with the completion of the human genome se-
quencing, the development of efficient lossless compression
methods for DNA sequences gained considerable interest [1–
7]. For example, the human genome is determined by approx-
imately 3 000 million base pairs [8], whereas the genome of
the wheat has about 16 000 million [9]. Since DNA is based
on an alphabet of four different symbols (usually known as
nucleotides or bases), namely, Adenine (A), Cytosine (C),
Guanine (G), and Thymine (T), it takes approximately 750
MBytes to store the human genome (using log2 4 = 2 bits per
symbol) and 4 GBytes to store the genome of the wheat.

In a previous work [10, 11], we proposed a three-state
finite-context model for DNA protein-coding regions, i.e., for
the parts of the DNA that carry information regarding how
proteins are synthesized. Basically, this three-state model
proved to be better than a single-state model, given additional

This work was supported in part by the FCT (Fundação para a Ciência e
Tecnologia) grant PTDC/EIA/72569/2006.

evidence of a phenomenon that is common in these protein-
coding regions, i.e., a periodicity of period three.

More recently [12], we investigated the performance of
finite-context models for unrestricted DNA, i.e., DNA includ-
ing coding and non-coding parts. In that work, we have shown
that a characteristic usually found in DNA sequences, the oc-
currence of inverted repeats, which is used by most of the
DNA coding methods (see, for example, [4–6]), could also be
successfully integrated in finite-context models. Inverted re-
peats are copies of DNA sub-sequences that appear reversed
and complemented (A ↔ T , C ↔ G) in some parts of the
DNA.

In this paper, we propose a lossless coding method for
DNA sequences based on finite-context models and arith-
metic coding. It uses two competing finite-context models
that capture the statistical information along the sequence
and, on a block basis, strive for encoding the data. For
each block, the best of the two models is chosen, i.e., the
one that requires less bits for representing the block. More-
over, we give experimental evidence that a correct tuning of
the parameter controlling the Lidstone estimator (which is
a generalization of the Laplace law of succession [13] and
also contains the Jeffreys [14] / Krichevsky-Trofimov estima-
tor [15] as a special case) is most relevant in the case of the
higher order finite-context model. The experimental results
obtained show that the proposed codec is able to give very
competitive compression results and that, therefore, finite-
context models can be used as the main method for lossless
coding of DNA sequences.

This paper is organized as follows. In Section 2 we de-
scribe our algorithm, and in particular how we collect the
statistical information needed by the arithmetic coding. In
Section 3 we provide experimental results obtained with our
method and we compare the results with one of the most re-
cent specialized methods. Finally, in Section 4 we draw some
conclusions.

2. THE PROPOSED METHOD

In this work, we propose a DNA lossless compression method
that is based on two finite-context models of different orders
that compete for encoding the data. Because DNA data are

1693978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

non-stationary, using two models with different orders allow a
better handling both of DNA regions that are best represented
by low order models and regions where higher order models
are advantageous. Therefore, although both models are con-
tinuously updated, only the best one is used for encoding a
given region. For convenience, the DNA sequence is parti-
tioned into non-overlapping blocks of fixed size (one hundred
DNA bases), which are then encoded by one (the best one) of
the two finite-context models.

To help explain our algorithm, let us consider an infor-
mation source that generates symbols, s, from a finite alpha-
bet A. At time t, the sequence of outcomes generated by
the source is xt = x1x2 . . . xt. The proposed algorithm re-
lies on a combination of two finite-context models that gen-
erate probability estimates that are then used for driving an
arithmetic encoder [16–18] (see Fig. 1). Each model col-
lects statistical information from a context of depth Mi, i =
1, 2,M1 �= M2. At time t, we represent the two condi-
tioning outcomes by ct

1 = xt−M1+1, . . . , xt−1, xt and by
ct
2 = xt−M2+1, . . . , xt−1, xt. Note that the total number of
conditioning states of a model with context depth M (i.e., an
order-M finite-context model) is |A|M . In the case of DNA,
since |A| = 4, an order-M model implies 4M conditioning
states.

G

xt−4

symbol
Input

c2t

CAGATA C T ...
x t+1... G T G A G CT

xt−10

A

Model 1

c1t
Context

Context

Model 2
P(x t+1= s | c)t

P(x = s | ct+1)t1

2

Fig. 1. Proposed model for estimating the probabilities: the
probability of the next outcome, xt+1, is conditioned by the
M1 or M2 last outcomes, depending on the finite-context
model chosen for encoding that particular DNA block. In this
example, M1 = 5 and M2 = 11.

In practice, the probability that the next outcome, xt+1,
is s, where s ∈ A = {A,C,G, T}, is obtained using the
Lidstone estimator [19]

P (xt+1 = s|ct) =
nt

s + δ∑

a∈A

nt

a + 4δ
, (1)

Table 1. Simple example illustrating how finite-context mod-
els are implemented. The rows of the table represent a prob-
ability model at a given instant t. In this example, the partic-
ular model that is chosen for encoding a symbol depends on
the last five encoded symbols (order-5 context).

Context, ct nt
A

nt
C

nt
G

nt
T

∑

a∈A

nt

a

AAAAA 23 41 3 12 79
...

...
...

...
...

...
ATAGA 16 6 21 15 58

...
...

...
...

...
...

GTCTA 19 30 10 4 63
...

...
...

...
...

...
TTTTT 8 2 18 11 39

where nt
s represents the number of times that, in the past, the

information source generated symbol s having ct as the condi-
tioning context. Parameter δ controls how much probability is
assigned to unseen (but possible) events, and plays a key role
in the case of high order models.1 Note that Lidstone’s esti-
mator reduces to Laplace’s estimator for δ = 1 [13] and to the
frequently used Jeffreys [14] / Krichevsky-Trofimov estima-
tor [15] when δ = 1/2. During our study, we found out exper-
imentally that, using the proposed combination of two finite-
context models, the probability estimates calculated for the
higher order model lead to better compression results when
smaller values of δ are used.

Usually, finite-context models are implemented by means
of tables that collect the number of occurrences of a given al-
phabet symbol after some past sequence (the context). These
counters are updated each time a symbol is encoded. Since
the context template is causal, the decoder is able to reproduce
the same probability estimates without needing additional in-
formation. However, because our method is composed of two
models, one bit needs to be added to each block, indicating
which one of the two finite-context models was used.

Table 1 shows an example, where an order-5 finite-context
model is presented. Each row represents a probability model
that is used to encode a given symbol according to the last
encoded symbols (five in this example). Therefore, if the
last symbols were “ATAGA”, i.e., ct = ATAGA, then the
model communicates the following probability estimates to
the arithmetic encoder:

P (A|ATAGA) = (16 + δ)/(58 + 4δ),

P (C|ATAGA) = (6 + δ)/(58 + 4δ),

1When M is large, the number of conditioning states, 4M , is high, which
implies that statistics have to be estimated using only a few observations.

1694

Table 2. Table 1 updated after encoding symbol “C”, accord-
ing to context “ATAGA”.

Context, ct nt
A

nt
C

nt
G

nt
T

∑

a∈A

nt

a

AAAAA 23 41 3 12 79
...

...
...

...
...

...
ATAGA 16 7 21 15 59

...
...

...
...

...
...

GTCTA 19 30 10 4 63
...

...
...

...
...

...
TTTTT 8 2 18 11 39

P (G|ATAGA) = (21 + δ)/(58 + 4δ)

and
P (T |ATAGA) = (15 + δ)/(58 + 4δ).

The probabilities are then passed to the arithmetic en-
coder, which generates output bit-streams with average bi-
trates almost identical to the entropy of the model [16–18].
The theoretical bitrate average (entropy) of a finite-context
model after encoding N symbols is given by

HN = −
1

N

N−1∑

t=0

log2 P (xt+1 = s|ct) bps, (2)

where “bps” stands for “bits per symbol”. Recall that the en-
tropy of any sequence of four symbols is limited to two bps, a
value that is achieved when the symbols are independent and
equally likely.

According to the example of Table 1, and supposing that
the next symbol to encode is “C”, we would require, theoret-
ically, − log2(6 + δ)/(58 + 4δ) bits to encode it. For δ = 1,
this is approximately 3.15 bits. Note that this is more than two
bits because, in this example, “C” is the least probable symbol
and, therefore, needs more bits to be encoded than the more
probable ones. After encoding this symbol, the counters will
be updated according to Table 2.

3. EXPERIMENTAL RESULTS

For the evaluation of the compression method described
in the previous section we used the same DNA sequences
used by Manzini et al. in [5], which are available from
www.mfn.unipmn.it/˜manzini/dnacorpus. This
corpus contains sequences from four organisms: yeast (Sac-
charomyces cerevisiae, chromosomes 1, 4, 14 and the mi-
tochondrial DNA), mouse (Mus musculus, chromosomes 7,
11, 19, x and y), arabidopsis (Arabidopsis thaliana, chromo-
somes 1, 3 and 4) and human (Homo sapiens, chromosomes
2, 13, 22, x and y).

Table 3. Compression values, in bits per symbol (bps), re-
garding a number of DNA sequences. The “DNA3” column
shows the results obtained by Manzini et al. [5]. Column
“FCM” contains the results of the proposed method. The or-
ders of the two models that provided the best result are indi-
cated under the columns labeled “M1” and ”M2”.

Name Size DNA3 FCM
bps M1 M2 bps

y-1 230 203 1.871 3 12 1.860
y-4 1 531 929 1.881 4 14 1.879
y-14 784 328 1.926 3 13 1.923
y-mit 85 779 1.523 5 9 1.484
Average – 1.882 – – 1.877

m-7 5 114 647 1.835 6 14 1.811
m-11 49 909 125 1.790 4 16 1.758
m-19 703 729 1.888 4 13 1.870
m-x 17 430 763 1.703 6 15 1.656
m-y 711 108 1.707 3 13 1.670
Average – 1.772 – – 1.738

at-1 29 830 437 1.844 6 16 1.831
at-3 23 465 336 1.843 6 16 1.826
at-4 17 550 033 1.851 6 15 1.838
Average – 1.845 – – 1.831

h-2 236 268 154 1.790 4 16 1.755
h-13 95 206 001 1.818 5 15 1.723
h-22 33 821 688 1.767 3 15 1.696
h-x 144 793 946 1.732 5 16 1.686
h-y 22 668 225 1.411 4 16 1.397
Average – 1.762 – – 1.711

Each of the sequences was encoded using the proposed
model, choosing the best pair M1,M2, such that 3 ≤ M1 ≤ 8
and 9 ≤ M2 ≤ 18. It was used the inverted repeats updating
mechanism proposed in [12] and δ = 1 for the lower order
model and δ = 1/30 for the higher order model. All informa-
tion needed for correct decoding is included in the bit-stream
and, therefore, the compression results presented in Table 3
account for that information. Besides the bitrate, the order of
the models that provided the best results is also indicated in
Table 3. For comparison, we include the results of the DNA3
compressor of Manzini et al. [5].

As can be seen from the results presented in Table 3, the
proposed method, using two competing finite-context mod-
els, always provides better results than the DNA3 compressor.
This confirms that the finite-context models can be success-
fully used as the main coding method for DNA sequences. Al-
though we do not include here a comprehensive study of the
impact of the δ parameter in the performance of the method,
nevertheless we leave an indication of how it can influence
the results. For example, using δ = 1 for both models would

1695

lead to bitrates of 1.869, 1.865 and 1.872, respectively for the
“at-1”, “at-3” and “at-4” sequences, i.e. approximately 2%
worse than when using δ = 1/30 for the higher order model.

4. CONCLUSION

Finite-context modeling has been used for DNA compression
only as a secondary, fall back method. However, as far as we
are aware of, no systematic study of their potential has been
carried out. In this paper, we have shown that a codec built of
two competing finite-context models is indeed able to attain
significant performance.

The experimental results show that the proposed ap-
proach can outperform the DNA3 coding method [5] for all
DNA sequences used in our experiments. Although not the
best method available in terms of compression performance,
DNA3 is a well-balanced approach, with reasonable computa-
tion time requirements. Other methods, such as GeNML [6],
can attain better compression results but at the cost of much
longer processing times.

5. REFERENCES

[1] S. Grumbach and F. Tahi, “Compression of DNA se-
quences,” in Proc. of the Data Compression Conf.,
DCC-93, Snowbird, Utah, 1993, pp. 340–350.

[2] E. Rivals, J.-P. Delahaye, M. Dauchet, and O. Del-
grange, “A guaranteed compression scheme for repeti-
tive DNA sequences,” in Proc. of the Data Compression
Conf., DCC-96, Snowbird, Utah, 1996, p. 453.

[3] X. Chen, S. Kwong, and M. Li, “A compression al-
gorithm for DNA sequences,” IEEE Engineering in
Medicine and Biology Magazine, vol. 20, pp. 61–66,
2001.

[4] T. Matsumoto, K. Sadakane, and H. Imai, “Biological
sequence compression algorithms,” in Genome Infor-
matics 2000: Proc. of the 11th Workshop, A. K. Dunker,
A. Konagaya, S. Miyano, and T. Takagi, Eds., Tokyo,
Japan, 2000, pp. 43–52.

[5] G. Manzini and M. Rastero, “A simple and fast DNA
compressor,” Software—Practice and Experience, vol.
34, pp. 1397–1411, 2004.

[6] G. Korodi and I. Tabus, “An efficient normalized maxi-
mum likelihood algorithm for DNA sequence compres-
sion,” ACM Trans. on Information Systems, vol. 23, no.
1, pp. 3–34, Jan. 2005.

[7] B. Behzadi and F. Le Fessant, “DNA compression
challenge revisited,” in Combinatorial Pattern Match-
ing: Proc. of CPM-2005, Jeju Island, Korea, June 2005,
LNCS, Springer-Verlag.

[8] L. Rowen, G. Mahairas, and L. Hood, “Sequencing the
human genome,” Science, vol. 278, pp. 605–607, Oct.
1997.

[9] C. Dennis and C. Surridge, “A. thaliana genome,” Na-
ture, vol. 408, pp. 791, Dec. 2000.

[10] P. J. S. G. Ferreira, A. J. R. Neves, V. Afreixo, and A. J.
Pinho, “Exploring three-base periodicity for DNA com-
pression and modeling,” in Proc. of the IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing, ICASSP-
2006, Toulouse, France, May 2006, vol. 5, pp. 877–880.

[11] A. J. Pinho, A. J. R. Neves, V. Afreixo, Carlos A. C.
Bastos, and P. J. S. G. Ferreira, “A three-state model for
DNA protein-coding regions,” IEEE Trans. on Biomed-
ical Engineering, vol. 53, no. 11, pp. 2148–2155, Nov.
2006.

[12] A. J. Pinho, A. J. R. Neves, and P. J. S. G. Ferreira,
“Inverted-repeats-aware finite-context models for DNA
coding,” in Proc. of the 16th European Signal Pro-
cessing Conf., EUSIPCO-2008, Lausanne, Switzerland,
Aug. 2008.

[13] P. S. Laplace, Essai philosophique sur les probabilités
(A philosophical essay on probabilities), John Wiley &
Sons, New York, 1814, Translated from the sixth French
edition by F. W. Truscott and F. L. Emory, 1902.

[14] H. Jeffreys, “An invariant form for the prior probabil-
ity in estimation problems,” Proc. of the Royal Society
(London) A, vol. 186, pp. 453–461, 1946.

[15] R. E. Krichevsky and V. K. Trofimov, “The performance
of universal encoding,” IEEE Trans. on Information
Theory, vol. 27, no. 2, pp. 199–207, 1981.

[16] T. C. Bell, J. G. Cleary, and I. H. Witten, Text compres-
sion, Prentice Hall, 1990.

[17] D. Salomon, Data compression - The complete refer-
ence, Springer, 2nd edition, 2000.

[18] K. Sayood, Introduction to data compression, Morgan
Kaufmann, 2nd edition, 2000.

[19] G. Lidstone, “Note on the general case of the Bayes-
Laplace formula for inductive or a posteriori probabil-
ities,” Trans. of the Faculty of Actuaries, vol. 8, pp.
182–192, 1920.

1696

