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ABSTRACT
A Bayesian dynamic model is developed to model complex

sequential data, with a focus on audio signals from music.

The music is represented in terms of a sequence of discrete

observations, and the sequence is modeled using a hidden

Markov model (HMM) with time-evolving parameters. The

model imposes the belief that observations that are temporally

proximate are more likely to be drawn from HMMs with sim-

ilar parameters, while also allowing for “innovation” associ-

ated with abrupt changes in the music texture. Segmentation

of a given musical piece is constituted via the model inference

and the results are compared with other models and also to a

conventional music-theoretic analysis.

Index Terms— Music, Sequence, Bayesian, Dynamic

model, Nonparametric

1. INTRODUCTION

The analysis of music is of interest to music theorists, for

aiding in music teaching, for analysis of human perception

of sounds [1], and for design of music search and orga-

nization tools [2]. A typical goal of music analysis is to

segment a given piece, with the objective of inferring inter-

relationships among motive and themes within the music. We

wish to achieve this task without a priori setting the num-

ber of segments or their length, motivating a non-parametric

framework. In this paper we are interested in processing the

acoustic waveform directly, and the proposed techniques are

also applicable for analysis of general acoustic signals.

Analyzing sequential data has been a longstanding prob-

lem in statistical modeling. With music as an example,

Paiement [3] proposed a generative model for rhythms based

on the distributions of distances between subsequences; to

annotate the changes in mixed music, Plotz [4] used stochas-

tic models based on the Snip-Snap approach, by evaluating

the Snip model for the Snap window at every position within

the music. However, these methods are either based on one

specific factor (rhythm) of music [3] or need prior knowledge

of the music’s segmentation [4]. Recently, a hidden Markov

model (HMM) [5] was used to model monophonic music

by assuming all the subsequences are drawn i.i.d. from one

HMM [6]; alternatively, an HMM mixture [7] was applied to

model the variable time-evolving properties of music, within

a semi-parametric Bayesian setting. In both of these models

the music was divided into subsequences, with an HMM em-

ployed to represent each subsequence; such an approach does

not account for the expected statistical relationships between

temporally proximate subsequences.

A key aspect of our proposed model is an explicit imposi-

tion of the belief that the likelihood that two subsequences of

music are similar (contained within the same or related seg-

ments) increases as they become more proximate temporally.

Additionally, with respect to the application of interest here,

music has the property that characteristics of a given piece

may repeat over time. Based on these considerations, we pro-

pose a nonparametric dynamic mixture model with varying

mixture weights, while sharing the same set of components

(atoms) at different time points. The model is used in this pa-

per to analyze music structure by inferring the time-evolving

relationships within the music sequence.

2. NONPARAMETRIC DYNAMIC MIXTURE

2.1. DP-Based Hidden Markov Mixture Model

The standard tool for analysis of sequential data is the hid-

den Markov model (HMM) [5]. For the discrete sequence of

interest, given an observation sequence x = {xt}T
t=1 with

xt ∈ {1, . . . , M}, the corresponding hidden state sequence is

S = {st}T
t=1, from which st ∈ {1, . . . , I}. A discrete HMM

is represented by parameters θ = {A,B, π}, defined as:

• A = {aρξ}, aρξ = Pr(st+1 = ξ|st = ρ): state transition

probability;

• B = {bρm}, bρm = Pr(xt = m|st = ρ): emission proba-

bility;

• π = {πρ}, πρ = Pr(s1 = ρ): initial state distribution.

To model the whole music piece with one HMM [6],

one may divide the sequence into J successive subsequences

{xj}J
j=1, each of length T with xj = {xjt}T

t=1 and xjt ∈
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{1, ..., M}. The joint distribution of the observation subse-

quences given the model parameters θ yields

p(x|θ) =
J∏

j=1

{ ∑

Sj

πsj,1

T−1∏

t=1

asj,t,sj,t+1

T∏

t=1

bsj,t,xj,t

}
(1)

However, rather than employing a single HMM for a given

piece, which is clearly overly-simplistic, one may allow the

model parameters to vary with time by letting

xj ∼ HMM(θj), θj ∼
K∑

k=1

pkθ∗
k, j = 1, . . . , J, (2)

which denotes that the subsequence xj is drawn from an

HMM with parameters θj and θj is drawn from a unique

set of mixture components {θ∗
k}K

k=1 with respective mixture

weights {pk}K
k=1.

Instead of setting the number of the mixture components a

priori, we can apply a Dirichlet process by assuming θj ∼ G,

with G ∼ DP (α0G0), where G0 is a base probability mea-

sure and α0 is a non-negative real number [8]. Sethuraman [9]

showed that

G =
∞∑

k=1

pkδθ∗
k
, pk = p̃k

k−1∏

i=1

(1 − p̃i) (3)

where {θ∗
k}∞k=1 represent a set of atoms drawn i.i.d. from G0

and {pk}∞k=1 represent a set of weights, with the constraint∑∞
k=1 pk = 1; each p̃k is drawn i.i.d. from the beta dis-

tribution Be(1, α0). Since in practice the {pk}∞k=1 diminish

quickly with increasing k (for reasonable choices of α0), a

truncated stick-breaking process [10] is often employed, with

a large truncation level K, to approximate the infinite stick

breaking process (in this approximation p̃K = 1). We note

that a draw G from a DP (α0G0) is discrete with probability

one.

2.2. Nonparametric Dynamic Structure

Placing a DP on the distribution of the subsequence-specific

HMM parameters, θj , allows for borrowing of information

across the subsequences, but does not incorporate informa-

tion that subsequences from proximal times should be more

similar. Hence, motivated by [11], we propose a more flexible

dynamic mixture model in which

θj ∼ Gj , Gj =
∞∑

k=1

pjkδθ∗
k
, θ∗

k ∼ H, (4)

where the subsequence-specific mixture distribution Gj has

weights that vary with j, represented as pj . Including the

same atoms for all j allows for repetition in the music struc-

ture across subsequences, with the varying weights allowing

substantial flexibility.

Based on these considerations, we propose a dynamic hi-

erarchical Dirichlet process (dHDP) with the following struc-

ture:

Gj = (1 − w̃j−1)Gj−1 + w̃j−1Hj−1 (5)

where G1 ∼ DP (α01G0), Hj−1 is called an innovation mea-

sure drawn from DP (α0jG0), and w̃j−1 ∼ Be(aw, bw). To

impose sharing of the same components across all time, G0 ∼
DP (γH), as in a hierarchical Dirichlet process (HDP) [12].

The measure Gj is modified from Gj−1 by introducing a

new innovation measure Hj−1, and the random variable w̃j−1

controls the probability of innovation (i.e., it defines the mix-

ture weights).

A draw G0 ∼ DP (γH) may be expressed as

G0 =
∞∑

k=1

βkδθ∗
k

(6)

and the weights are drawn β ∼ Stick(γ), where Stick(γ)
corresponds to letting βk = β̃k

∏k−1
i=1 (1 − β̃i) with β̃k

iid∼
Be(1, γ). Since the same atoms θ∗

k
iid∼ H are used for all Gj ,

it is also possible to share data between subsequences widely

separated in time; this latter property may be of interest when

the music has temporal repetition.

The measures G1,H1, . . . , HJ−1 have their own mixture

weights, yielding

G1 =
∞∑

k=1

ζ1kδθ∗
k
, H1 =

∞∑

k=1

ζ2kδθ∗
k
, . . . , HJ−1 =

∞∑

k=1

ζJkδθ∗
k

ζj
ind∼ DP (α0jβ), j = 1, . . . , J

(7)

where, analogous to the discussion at the end of Section 2.1,

the different weights ζj = {ζjk}∞k=1 are independent given β
since G1, H1, . . . , HJ−1 are independent given G0.

To further develop the dynamic relationship from G1 to

GJ , we extend the mixture structure in (5) from group to

group:

Gj = (1 − w̃j−1)Gj−1 + w̃j−1Hj−1

=
j−1∏

l=1

(1 − w̃l)G1 +
j−1∑

l=1

{
j−1∏

m=l+1

(1 − w̃m)}w̃lHl

= wj1G1 + wj2H1 + . . . + wjjHj−1

(8)

where w11 = 1, w̃0 = 1, and for j > 1 we have wjl =
w̃l−1

∏j−1
m=l(1 − w̃m), for l = 1, 2, . . . , j. It can be easily

verified that
∑j

l=1 wjl = 1 for each j, with wjl the prior

probability that parameters for subsequence j are drawn from

the lth component distribution, where l = 1, . . . , j indexes

G1, H1, . . . , Hj−1, respectively.

Based on the dependent relation induced here, we have an

explicit form for each {pj}J
j=1 in (4):

pj =
j∑

l=1

wjlζl. (9)

1682



If all w̃j = 0, all of the groups share the same mixture dis-

tribution related to G1 and the model reduces to the Dirich-

let mixture model described in Section 2.1. If all w̃j = 1
the model instead reduces to the HDP [12], in which there is

no temporal dependence between the adjacent subsequences.

Therefore, the dynamic HDP is more general than both DP

and HDP, with each a special case. In the posterior computa-

tion, we treat the w̃ as random variables and add beta priors on

them for more flexibility. To encourage the adjacent groups

to be shared, the prior Be(w̃j |aw, bw) for all j = 1, . . . , J−1
should be specified to have E(w̃j) < 0.5.

2.3. Posterior Computation

A modification of the block Gibbs sampler [10] is proposed

for dHDP HMM mixture inference. As discussed in Section

2.1, a truncated stick-breaking process [10] is employed to

reduce the computational complexity. For easier inference.

we introduce two indicator vectors rj and zj for each subse-

quence xj . The rj has only one component equal to 1 with

others equal to zero: if rjl = 1, then θj is drawn from the lth
component distribution in (8), where l might be equal to one

of the values from 1 to j. The zj is another indicator vector

of length equal to K (K represents the truncation level), with

zjk = 1 if the subsequence xj is allocated to the kth atom

(θj = θ∗
k) and zjk = 0 otherwise.

The parametric form for each of the components θ∗
k for

k = 1, . . . , K is a hidden Markov model (HMM) with θ∗
k =

(A∗
k,B∗

k,π∗
k). As in [7], the component parameters A∗

k, B∗
k

and π∗
k are assumed to be independent, with the base measure

having a product form with Dirichlet components for each of

the probability vectors.

The posterior distribution of the model parameters is ex-

pressed as Pr(θ∗, w̃, ζ, β,α0, γ, z, r|X). In each iteration

of the Gibbs sampler, each variable is drawn from the full

conditional posterior distribution given all other samples. We

choose initial values for these variables and run through the

sequence of the Markov chain until it converges to a station-

ary distribution. The samples are collected to approximately

represent the parameters’ full posterior distribution underly-

ing the data.

Since the indicator vector zj , for j = 1, . . . , J , represents

the membership of sharing across all the subsequences, we

use this information to segment the music, by assuming that

the subsequences possessing the same membership should be

grouped together. In order to overcome the issue of label

switching that exists in Gibbs sampling, instead of using the

membership z to represent the result, we use the similarity

measure E(z′z), in which z′ represents the transpose of z.

Here E(z′z) is approximated by averaging the quantity z′z
from multiple iterations, and in each iteration z′jzj′ measures

the sharing degree of θj and θj′ by integrating out the index of

atoms. Related clustering representations of non-parametric

models have been considered in [13].

3. MUSIC EXPERIMENTS

Before the music is modeled with the dHDP HMM mixture,

the acoustic signal is sampled at 22.05 KHz and divided

into 100 ms contiguous frames; 40-dimensional Mel fre-

quency cepstral coefficients (MFCCs) were extracted from

each frame, these being effective for extracting perceptually

important parts of the spectral envelope of audio signals.

Each frame was quantized into discrete symbols using vector

quantization (VQ) (the codebook size M = 16).

We consider a relatively well known musical piece: “A

Day in the Life” from the Beatle’s album Sgt. Peppers Lonely
Hearts Club Band. This Beatle’s song has many distinct sec-

tions (vocals, along with clearly distinct instrumental parts).

After the piece is processed, the sequence is represented as

a series of discrete observations, shown in Figure 1. We di-

vided the piece into 88 subsequences and each subsequence

includes 75 observations. The music segmentation results

with dHDP HMM mixture is shown in Figure 2. The results in

Figure 2 (a) quantify how inter-related any one subsequence

of the music is to all others. We observe that the music is de-

composed into clear contiguous segments of various lengths,

and segment repetitions are evident. To evaluate the segmen-

tation results, we provide a music-theoretic analysis (via the

third author) in Table 1
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Fig. 1. Sequence of code indices for the Beatle’s music using

a codebook of dimension M = 16.
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Fig. 2. Segmentation results of the dHDP HMM modeling for

the Beatles music. (a) The similarity matrix E(z′z). (b) The

segmentation result on the Beatles audio waveform (blue curves

represent the audio waveform, red dashed lines represent seg-

ment positions and the number in a box labels the partition in-

dex).

For comparison, we now analyze the same music using

both the DP-HMM [7] and HDP-HMM [12], which are two

special cases of our model (fixing all w̃j = 0 and w̃j = 1
respectively, without changing anything else). The results are
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presented in Figure 3 analogous to the dHDP HMM presen-

tation. The performance of the dHDP relative to the other ap-

proaches is consistent with the music theoretic analysis and

yields “cleaner” segmentation results.

segment subsequences music theory
index included explanation
1 1st an instrumental accompani-

ment with some applause

2 2nd ∼ 27th three verses sung by Lennon

3 28th ∼ 36th an orchestral crescendo contin-

ues

4 37th ∼ 47th an interlude (’Woke up,...’)

sung by McCartney

5 48th ∼ 52nd a short transition

6 53rd ∼ 61st a verse part sung by Lennon

7 62nd ∼ 69th the same orchestral crescendo

as the third part

8 70th ∼ 77th the “famous” final chords

played on three different pianos

9 78th ∼ 82nd an almost quiet part

10 83rd ∼ 88th the famous “studio chatter” part

Table 1. Segmentation of the Beatles music with musical explana-

tion [14].
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Fig. 3. Results of DP-HMM and HDP-HMM modeling for the Bea-

tles music. (a) The similarity matrix E(z′z) from DP-HMM. (b) The

similarity matrix E(z′z) from HDP-HMM.

4. CONCLUSIONS

A Bayesian dynamic mixture model has been proposed for

music analysis. The model has the following characteristics:

(i) with inferred probabilities, the underlying parameters as-

sociated with data at adjacent times are the same; and (ii)
since the same underlying atoms are used in the mixtures at

all times, it is possible that the same atoms may be used at

temporally distant time, allowing the capture of repeated pat-

terns in temporal data. A relatively simple Gibbs sampler is

employed for model inference. The performance of the dHDP

HMM mixture is demonstrated on real music. Compared with

other mixture models, the dHDP HMM mixture yields better

segmentation results by considering the time evolving within

the music piece (the presented results are representative of

tests on many different pieces).
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