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ABSTRACT

Target detection in sea clutter is a challenging problem in radar de-
tection, specifically, when the Doppler return of the target and clutter
are collocated. Polarization diverse radars provide additional infor-
mation that enhances target detection. In this paper, we use an effec-
tive independent component analysis (ICA) approach, adaptive com-
plex maximization of non-Gaussianity (A-CMN) [1], to efficiently
combine polarimetric radar data prior to detection. We show that
A-CMN estimates the polarimetric scatter coefficients for the single
target in clutter case, thereby providing matched-filter performance
without the need for clutter or target models. The detection per-
formance using ICA is evaluated with sea clutter collected with the
McMaster IPIX radar off the coast of Canada [2]. We also demon-
strates the ability of this approach to adapt to the changing sea clutter
conditions using simulation results.

Index Terms— Nonlinear estimation, radar detection, ICA

1. INTRODUCTION

For target detection in sea clutter, several methods have been de-
scribed in the literature. Non-Gaussian models are used to formulate
detection algorithms with polarimetric channels in [3] and Bayesian
detector algorithms in [4]. In both cases, performance is tied to the
validity of the target and clutter models. Data driven approaches,
such as neural network implementations [5, 6] require a great num-
ber of training samples and are computationally intensive. The ap-
proach in [7] treats the spectrum as a probability density function
(pdf) and forms a detection based on the entropy. This approach ex-
ploits the line component nature of the target spectrum but does not
utilize polarization diversity.

Independent component analysis (ICA) for separating complex-
valued signals has found utility in many applications such as wireless
communications [8], radar beamforming [9], data analysis in mag-
netic resonance imaging [10], and electroencephalograph [11]. It
is also shown that adapting the nonlinearity to the source pdf im-
proves performance [1]—we use this feature in A-CMN to adapt to
the current sea state conditions. However to the best of our knowl-
edge, application of ICA to radar target detection in sea clutter has
not been demonstrated.

As pointed out in [12], the spectrum of sea clutter is relatively
smooth, whereas the spectrum from a target return is a line com-
ponent or in other words a peakier spectrum. This phenomena is
exploited in ICA where the estimated independent components are
as non-Gaussian as possible, i.e., increasing non-Gaussianity results
in a boosting of the line component. As we will show, this boost-
ing results in an increase in signal to noise ratio (SNR) of the target
providing increased probability of detection.

In this study, we show that using complex-valued ICA as a pre-
processing step on radar polarimetric data improves detection perfor-
mance. We compare the performance of using ICA as a preprocess-
ing step versus a matched filter with the IPIX radar data from Mc-
Master University [2]. We also demonstrate that using the adaptable
nonlinearity method in [1], allows the algorithm to adapt to various
sea clutter conditions.

2. COMPLEX ICA

2.1. Complex preliminaries

A complex variable z is defined in terms of two real variables zR

and zI as z = zR + jzI . Statistics of a complex random vector
x = xR + jxI are defined by the joint pdf px(xR,xI). The kur-
tosis of a zero mean complex random variable, often used as a quan-
titative measure of non-Gaussianity, is defined in [13] as kurt(y) =

E{|y|4} − 2
(
E{|y|2})2 − ∣∣E{y2}∣∣2 and reduces to

kurtc(y) = E{|y|4} − 2 (1)

when y is circular with unit variance. Complex Gaussian random
variables have kurtosis values of zero and kurtosis is nonzero for
most non-Gaussian random variables [14]. Random variables that
have a negative kurtosis are called sub-Gaussian and those with pos-
itive kurtosis are super-Gaussian. As stated earlier, peakier distribu-
tions such as the target spectrum, are super-Gaussian in nature.

2.2. ICA in the complex domain

In ICA, the observed data x are typically expressed as a linear com-
bination of latent variables such that

x = As (2)

where s = [s1, . . . , sM ]T is the column vector of latent sources,
x = [x1, . . . , xM ]T is the column vector of observed mixtures, and
matrix A is the M ×M mixing matrix assumed invertible. We as-
sume that the sources and mixing matrix are complex valued. ICA
then identifies the statistically independent sources given the ob-
served mixtures typically by estimating a demixing matrix W so
that the source estimates become Wx.

Due to the various differences of the background sea clutter dis-
tribution, we choose to use the A-CMN algorithm introduced in [1].
The cost function is

J(w) = E

{∣∣∣wHx
∣∣∣2p

}
s.t. ||w|| = 1 (3)

where p is the estimated shape parameter and w ∈ C
N . The data

model used in A-CMN assumes the signal’s modulus is described
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by the generalized Gaussian distribution with shape parameter p.
A shape parameter of one specifies a Gaussian distribution while
a value less than one corresponds to super-Gaussian and a value
greater than one is sub-Gaussian. The goal of A-CMN is thus to
match the nonlinearity to the source distribution providing a more
accurate estimate of non-Gaussianity. As in most ICA algorithms,
A-CMN first prewhitens the data. The algorithm finds the demix-
ing vector w that maximizes the cost, or as shown in [1], the non-
Gaussianity of the source estimates.

3. POLARIMETRIC RADAR MODEL

The polarimetric radar data used in this report was collected with
the McMaster University IPIX radar in Dartmouth, Nova Scotia [2].
Details of the data are given in Table 1 where we use the designation
F19 and F30 throughout this paper to specify the files we used.

We consider only two polarizations in this study, namely hori-
zontally transmitted and received (HH) and horizontally transmitted
and vertically received (HV). The complex-valued signal voltage at
discrete time index n = 1, . . . , N becomes

y(n) = As(n) + e(n) (4)

where y = [yhh, yhv]T is the received polarization data correspond-
ing to HH and HV polarizations, A is the 2 × 2 complex-valued
scattering matrix

A =

[
at

hh ac
hh

at
hv ac

hv

]

where the variables at
hh and ac

hh represent the target and clutter
backscatter amplitude and phase with HH polarization respectively,
at

hv and ac
hv are with HV polarization, s = [st, sc]T is the 2 × N

source matrix consisting of the target and clutter baseband signal,
and e is thermal noise. Note that we are assuming that st are the
time samples of one target and sc represents the large collection of
point scatters representing clutter [4] and the time index n is ignored
to simplify the notation.

4. ICA DETECTION ENHANCEMENT

As shown in [7, 12] the spectrum of sea clutter is relatively smooth
as compared to the line component return from a target. Because the
target spectrum is peakier, it has a distribution with a higher kurtosis
value than clutter only and hence is more super-Gaussian. This is a
natural application of ICA where the algorithm finds the demixing
matrix W to make the source estimates non-Gaussian, or in the case
of a target, as super-Gaussian as possible. Therefore the spectrum of
y is used in the ICA algorithm by first transforming the data into the
frequency domain using a discrete Fourier transform by

x = yF = AsF + eF

where F is the N × N matrix of discrete Fourier transform coeffi-
cients, N is the block size, and x are the mixtures used in ICA. Note
that the Fourier transform does not alter the scatter matrix A.

The result of ICA is then two source estimates, one with the
target and one with clutter—we choose the source estimate with the
highest super-Gaussianity measure to represent the target as seen in
Figure 1. As we will show in the simulations, ICA increases the
target’s SNR enhancing the detector’s performance, and surprisingly,
closely matches a matched-filter response. This result, outlined in
the appendix, shows that maximizing the cost given in (3) leads to a
matched filter response assuming a single target in clutter. Note that

File number Wave height Range resolution Frequency PRF
F19 2 m 30 m 9.39 GHz 1 kHz
F30 0.9 m 30 m 9.39 GHz 1 kHz

Table 1. IPIX radar parameters

Fig. 1. ICA preprocessing block diagram showing the time domain
inputs for both polarizations followed by the Fourier transform and
ICA algorithm. The source estimate from ICA with the largest super-
Gaussianity (S-G) measure is passed to the detector.

if no target is present, the result may be a peakier clutter estimate
which may increase the false alarm rate (FAR). This was taken into
account in the simulations by adjusting the thresholds to keep the
same false alarm rate among the simulations. Also if several targets
are present performance will degrade, however we did not quantify
this effect.

Figure 2 depicts how ICA increases the target SNR using a block
size of 512. The data on the left is the amplitude versus Doppler filter
of the received HH and HV data with a synthetic test target added to
filter 245. The synthetic target was added to range gate four, a range
gate with sea clutter only. The right side of the figure depicts the
estimated sources using ICA. The top source shows the test target
with an increased SNR while the second source estimate shows no
target. The top source would be passed on to the detector since it has
the highest super-Gaussianity measure.

5. SIMULATIONS

Our goal in this section is to demonstrate the utility of using ICA as a
preprocessing step for target detection, specifically, when the target
occupies the same Doppler filter as the sea clutter. Our simulation
uses the IPIX data outlined in Table 1 where we use a range gate
that contains only sea clutter to inject the target. The synthetic target
is placed in a Doppler filter centered in the sea clutter with an SNR
based on the local mean noise level of the 16 surrounding filters. The
scatter matrix is then randomly generated for the two polarizations.

The detector used in the simulations finds a threshold based on
the squared magnitudes of the 16 Doppler filters above and below
the target filter, more formally, the threshold T = max(L, R)kFAR,
where L is the mean of the 16 filters below the target, R is the mean
of the 16 filters above the target, and kFAR is the threshold multi-
plier for a given false alarm rate. Although the detector is not so-
phisticated, it has found use in numerous radar applications and it
provides a means for quantifying our preprocessing stage. For each
simulation run, we calculate the probability of detection (PD) while
increasing the simulated target SNR. This is done with block sizes of
512 and 1024 using files F19 and F30. We run the detector on four
channels: i) the Fourier transformed received data xhh and xhv , ii)
the output of ICA, st, and iii) a matched filter designated as xm.

A matched filter is used as a benchmark since it maximizes the
SNR [15] at the output of a linear filter and is optimal with Gaussian
noise. The 2 × 1 matched filter coefficients are m = C−1r, where
C = E{eeH} is the covariance of the zero-mean noise between po-
larization channels and r = [at

hh, at
hv]T is the steering vector. The

covariance is estimated on each block of data while the steering vec-
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(a) Mixtures (b) Source estimates

Fig. 2. Spectrum of mixtures (left) and ICA results (right) with test
target in Doppler filter 245.

tor is known a priori for the synthetic target. The resulting matched
filter channel is thus xm = mHx. Note that the steering vector is
unknown for real targets. Prior to each simulation run, the threshold
multiplier, kFAR, is determined to keep the false alarm rate at 10−2,
where a false alarm is defined as at least one detection per block.

Figures 3 and 4 depict the PD results with a block size of 512 for
files F19 and F30 for the four channels: ICA, matched filter, HH, and
HV data. What we glean from the figures is that ICA performs about
1 dB better than no preprocessing, i.e., using xhh and xhv , and only
0.25 dB less than the matched filter. These values were calculated at
PD = 0.5. File F30 shows ICA performs approximately 0.5 dB less
than the matched filter but still 0.5 dB better than no preprocessing.
Figures 5 and 6 show similar results when the block size is 1024,
however with file F30, ICA performs almost as good as the matched
filter. This result is surprising in that ICA was able learn the steering
vector to be able to perform as well as the matched filter, we show
how ICA estimates the matched filter in the appendix.

Figure 7 illustrates the importance of using the adaptive non-
linearity intrinsic to the A-CMN algorithm. The figure shows the
shape parameter estimate, p, for the two sources with and without
a target using F19. Figure 7(a) clearly indicates the nonstationar-
ity of sea clutter with the shape parameter oscillating between sub
and super-Gaussian indications. However with a target injected, the
shape parameter becomes ∼ 0.3 indicating a super-Gaussian source
as expected. Figure 8 depicts the shape parameter using F30. Here
we see that the sea clutter is more super-Gaussian with p < 1. Again
with the target present the shape parameter becomes∼ 0.3. This ev-
idence along with the PD curve results suggests that file F30 has a
the higher sea state then file F19. One can conclude that adaptabil-
ity is important when used in an application such as this due to the
variable nature of sea environment.

6. CONCLUSIONS

In this paper we present a method for using complex-valued ICA as a
preprocessing step in target detection in sea clutter. Our method uses
ICA to combine polarimetric data to increase the targets’ SNR prior
to detection. We show, using a synthetic target embedded in real sea
clutter, that the gain using this method approaches that of a matched
filter. We did not compare our results with the Bayesian receiver in
[4] due to the disparate block sizes. The Bayesian approach uses
block sizes of 64 to 128, whereas ICA requires greater then 256 to
operate effectively. However, with efficient Bayesian approaches,
the ICA step can be used to improve the detection performance of
the Bayesian receiver, as it can other detection techniques.

We also show that the adaptable ICA algorithm, A-CMN pre-

Fig. 3. Plot of detection performance versus target SNR with file
F19 and block size of 512.

Fig. 4. Plot of detection performance versus target SNR with file
F30 and block size of 512.

sented in [1], is able to modify the nonlinearity to match the distri-
bution of the changing sea clutter conditions.

A. APPENDIX

We show that maximization of the ICA cost function (3) with the
constraint wHw = 1, results in the matched filter coefficients with
the simplifying assumption that a target resides in one Doppler filter
and shape parameter p = 2. Our data vector x is M × N , where
M is the number of polarization channels and N is the number of
Doppler filter observations. Doppler filters, x(1), . . . ,x(N), con-
tain whitened noise, due to ICA preprocessing. We assume a tar-
get is added to one filter with steering vector r = Qa, where a is

the target’s true steering vector and Q = C−1/2 is the whitening
transform. We replace the expectation in (3) with the mean ergodic
theorem obtaining

J(w) =

N∑
n=1

∣∣∣wHx(n)
∣∣∣4 +

∣∣∣wHr
∣∣∣4 + λ(wHw − 1)

where λ is the Lagrange multiplier. Although J(w) is real-valued
and hence can be written as a function of w and w∗ allowing us to
use Wirtingen calculus [16] to find the derivative as

∂J

∂w∗
=

N∑
n=1

2|wHx(n)|2
[
wT x(n)∗

]
x(n)+2|wHr|2(wT r∗)r+λw.
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Fig. 5. Plot of detection performance versus target SNR with file
F19 and block size of 1024.

Fig. 6. Plot of detection performance versus target SNR with file
F30 and block size of 1024.

We find the w that maximizes the cost by setting the derivative to
zero and use the expectation of the noise term yielding

w =
2NE{|wHx|2(wT x∗)x}+ 2|wHr|2(wT r∗)r

−λ
. (5)

The term in the expectation can be rewritten as E{wHxxHw(xxHw)}.
Due to the initial whitening of x, we use the approximation from [14]
allowing us to split the expectation into E{wHxxHw(xxHw)} ≈
E{wHxxHw}E{xxHw}. Noting that x is white with zero mean,

we can further simplify to E{wHxxHw}E{xxHw} = w.

Using the constraint wHw = 1, we pre-multiply both sides of
(5) by wH and solve for λ obtaining

−λ = 2NwHw + 2|wHr|2(wT r∗)wHr. (6)

Substituting (6) into (5) and solving for w results in

w =
2Nw + 2|wHr|2(wT r∗)r

2N + 2|wHr|2(wT r∗)wHr
.

After some algebraic manipulations we obtain or final result w =
r

wHr
, where r is the steering vector after whitening and the denom-

inator scales w to unit norm.
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