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ABSTRACT

In this paper, we propose a novel semi-supervised speaker

identification method that can alleviate the influence of non-

stationarity such as session dependent variation, the recording

environment change, and physical condition/emotion. We as-

sume that the utterance variation follows the covariate shift
model, where only the utterance sample distribution changes

in the training and test phases. Our method consists of

weighted versions of kernel logistic regression and cross-

validation and is theoretically shown to have the capability of

alleviating the influence of covariate shift. We experimentally

show through text-independent speaker identification simula-

tions that the proposed method is promising in dealing with

variations in session dependent utterance variation.

Index Terms— Speaker identification, covariate shift,

semi-supervised learning, kernel logistic regression, impor-

tance estimation.

1. INTRODUCTION

Speaker identification methods are widely used in various

real-world situations such as access control of information

service systems and speaker detection in speech dialog and

speaker indexing problems with large audio archives. Re-

cently, the speaker identification and indexing problems in

meetings attracted a great deal of attention.

Standard methods of text-independent speaker identifica-

tion includes the Gaussian mixture model (GMM) [1] or ker-

nel methods such as the support vector machine (SVM) [2].

In these supervised learning methods, it is implicitly assumed

that training and test data follow the same distribution. How-

ever, the training and test distributions are not necessarily the

same in practice since the utterance features vary over time

due to session dependent variation, the recording environment

change, and physical condition/emotion.

To alleviate the influence of session dependent variation,

it is common to use speech samples recorded in several dif-

ferent sessions [3]. However, gathering many speech samples

and labeling the speaker ID to the collected data are expensive

both in time and cost and therefore not realistic in practice.

A more practical setup would be semi-supervised learn-
ing, where unlabeled samples are additionally given from the

test environment. In semi-supervised learning, it is required

that the training and test distributions are related to each other

in some sense; otherwise we may not be able to learn any-

thing about the test distribution from the training samples. A

popular modeling is called covariate shift [4], where the in-

put distributions are different in the training and test phases

but the conditional distribution of labels remains unchanged.

In this paper, we formulate the semi-supervised speaker

identification problem in the covariate shift framework and

propose a method that can cope with utterance variation.

Under covariate shift, standard maximum likelihood esti-

mation is no longer consistent—the influence of covariate

shift can be asymptotically canceled by weighting the log-

likelihood terms according to the importance [4]: w(X) =
pte(X)/ptr(X), where pte(X) and ptr(X) are test and training

input densities. The importance weight w(X) is unknown in

practice and needs to be estimated from data. For weight es-

timation, we utilize the Kullback-Leibler importance estima-
tion procedure (KLIEP) [5] due to its superior performance.

The regularized kernel logistic regression model contains two

tuning parameters: the kernel width and the regularization pa-

rameter [3]. Usually these tuning parameters are optimized

based on cross validation (CV). However, CV is no longer

unbiased due to covariate shift and therefore is not reliable

as a model selection method. To cope with this problem, we

use an importance-weighted version of CV (IWCV) [6] for

unbiased model selection. The validity of our approach is ex-

perimentally shown through text-independent speaker identi-

fication simulations.

2. PROBLEM FORMULATION

In this section, we formulate the speaker identification prob-

lem based on the kernel logistic regression (KLR) model.

Text-independent Speaker Identification: An utterance

sample X pronounced by a speaker is expressed as a set of

N mel-frequency cepstrum coefficient (MFCC) [7] vectors of
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d dimensions:

X = [x1, . . . , xN ] ∈ R
d×N .

For training, we are given n labeled utterance samples

Z = {(Xi, yi)}n
i=1,

where yi ∈ {1, . . . ,K} denotes the index of the speaker who

pronounced Xi. The goal of speaker identification is to pre-

dict the speaker index of a test utterance sample X based on

the training samples. We predict the speaker index c of the

test sample X following the Bayes decision rule:

max
c

p(y = c |X).

For approximating the class-posterior probability, we use

p(y = c |X;V) =
exp fvc

(X)∑K
l=1 exp fvl

(X)
,

where V = [v1, . . . ,vK ]� ∈ R
K×n is the parameter, � de-

notes the transpose, and fvl
is a discriminant function cor-

responding to speaker l. This form is known as the softmax
function and widely used in multiclass logistic regression. We

use the following kernel regression model as the discriminant

function fvl
:

fvl
(X) =

n∑
i=1

vl,iK(X, Xi) l = 1, . . . , K,

where vl = (vl,1, . . . , vl,n)� ∈ R
n are parameters corre-

sponding to speaker l and K(X,X′) is a kernel function. In

this paper, we use the sequence kernel [2] as the kernel func-

tion since it allows us to handle features with different size;

for two utterance samples X = [x1, . . . ,xN ] ∈ R
d×N and

X′ = [x′
1, . . . , x

′
N ′ ] ∈ R

d×N ′
(generally N �= N ′), the se-

quence kernel is defined as

K(X, X′) =
1

NN ′

N∑
i=1

N ′∑
i′=1

exp
(−‖xi − x′

i′‖2

2σ2

)
.

Note that kernel logistic regression is a modeling assump-

tion; thus the true class-conditional probability may not be

exactly realized by the kernel logistic regression model. This

implies that there exists some model error, i.e., even when the

parameter is chosen optimally, there remains an approxima-

tion error. This setup is not of course preferable, but more

or less there exists a model error in practice since it is not

generally possible to prepare an exactly correct model. Tradi-

tional machine learning theories often assume that the model

at hand is correct (i.e., no model error exists). However, this

is not realistic and not useful in practice, so in this paper we

explicitly take into account model misspecification within the

covariate shift framework.

Kernel Logistic Regression [3, 8]: We employ maximum

likelihood estimation for learning the parameter V. The neg-

ative regularized log-likelihood function P log
δ (V;Z) for the

kernel logistic regression model is given by

P log
δ (V;Z) = −

n∑
i=1

log P (yi |Xi; V) +
δ

2
tr(VKV�),

where δ
2 tr(VKV�) is a regularizer introduced for avoiding

overfitting and K = [K(Xi,Xj)]ni,j=1 is the kernel Gram ma-

trix. P log
δ (V;Z) is a convex function with respect to V and

therefore its unique minimizer can be obtained by, e.g., the

Newton method.

Model Selection in KLR: KLR includes two tuning

parameters—the Gaussian width σ and the regularization pa-

rameter δ. One of the popular approaches to model selection

is cross validation (CV).
Let us divide the training set Z = {(Xi, yi)}n

i=1 into k
disjoint non-empty subsets {Zi}k

i=1 of (approximately) the

same size. Let ŷ(X;Zj) be an estimate of a speaker of a test

utterance sample X obtained from {Zi}i�=j (i.e., without Zj).

Then the k-fold CV (kCV) score is given by

R̂Z
kCV =

1
k

k∑
j=1

1
|Zj |

∑
(x,y)∈Zj

I(y = ŷ(X;Zj)),

where |Zj | denotes the number of samples in the subset Zj

and I(·) denotes the indicator function.

KLR, CV, and Covariate Shift: The use of KLR and CV

could be theoretically justified when the training utterance

features and the test utterance features independently follow

the same probability distribution with density p(X) and the

class label y follows the common conditional probability dis-

tribution p(y |X) in the training and test phases. Indeed, if

these conditions are fulfilled, KLR is shown to be consistent,
i.e., the learned parameter converges to the optimal value:

lim
n→∞ V̂ = V∗,

where V̂ is the parameter learned by KLR and V∗ is the op-

timal parameter that minimizes the expected prediction error

for test samples:

V∗ = argmin
V

∫∫
I(y = ŷ(X;V))p(y |X)p(X)dydX.

ŷ(X;V) is an estimate of speaker of an utterance feature X
for parameter V. Also, when p(X) and p(y |X) are common

in the training and test phases, kCV is (almost) unbiased:

EZ
[
R̂Z

kCV − RZ
]
≈ 0,
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where EZ is the expectation over the training set Z and RZ

is the expected prediction error defined by

RZ =
∫∫

I(y = ŷ(X;Z))p(y |X)p(X)dydX.

However, in practical speaker identification, speech fea-

tures are not stationary due to utterance variation, the record-

ing environment change, and speaker feeling. Thus, the train-

ing and test feature distributions are not necessarily the same.

Then the above good theoretical properties are no longer true.

If the training and test feature distributions share noth-

ing in common, we may not be able to learn anything about

the test distribution from the training samples. In this paper,

we explicitly deal with such changing environment via the

covariate shift model [4]—the input distributions change be-

tween the training and test phases, ptr(X) �= pte(X), but the

conditional distribution p(y |X) remains unchanged.

3. IMPORTANCE WEIGHTING TECHNIQUES FOR
COVARIATE SHIFT ADAPTATION

In this section, we show how to cope with covariate shift.

Importance Sampling: In the absence of covariate shift, the

expectation over test samples can be computed by the expec-

tation over training samples since they are drawn from the

same distribution. However, under covariate shift, the dif-

ference of input distributions should be explicitly taken into

account. A basic technique for compensating for the distribu-

tion change is importance sampling, i.e., the expectation over

training samples is weighted according to their importance in

the test distribution. Indeed, based on the importance weight

w(X) =
pte(X)
ptr(X)

,

the expectation of some function F (X) over the probability

density pte(X) can be computed by

Epte(X)[F (X)] = Eptr(X)[F (X)w(X)].

Importance Weighted Kernel Logistic Regression: If the

importance sampling technique is applied in KLR, we have

the following importance weighted KLR (IWKLR):

P̃ log
δ (V;Z)=−

n∑
i=1

w(Xi) log P (yi |Xi; V) +
δ

2
tr(VKV�).

IWKLR is consistent even under covariate shift [4]:

lim
n→∞ Ṽ = V∗,

where Ṽ is the parameter learned by IWKLR and V∗ is the

optimal parameter given by

V∗ = argmin
V

∫∫
I(y = ŷ(X;V))p(y |X)pte(X)dydX.

Note that P̃ log
δ (V;Z) is still convex and thus the global solu-

tion can be obtained by the Newton method.

Importance Weighted Cross Validation: IWKLR includes

the Gaussian width σ and the regularization parameter δ as

tuning parameters. Here, we introduce important weighted
cross validation (IWCV) [6] for model selection: the k-fold

IWCV (kIWCV) score is given by

R̃Z
kIWCV =

1
k

k∑
j=1

1
|Zj |

∑
(X,y)∈Zj

w(X)I(y = ŷ(X;Zj)).

Even under covariate shift, kIWCV is almost unbiased [6]:

EZ
[
R̃Z

kIWCV − RZ
]
≈ 0,

where RZ is the expected prediction error defined by

RZ =
∫∫

I(y = ŷ(X;Z))p(y |X)pte(X)dydX.

Importance Weight Estimation: As shown above, the im-

portance weight w(X) plays a central role in covariate shift

adaptation. However, the importance weight is usually un-

known, so it needs to be estimated from samples. Here, we

assume that in addition to the training input samples X tr =
{Xtr

i }ntr
i=1 drawn independently from ptr(X), we are given un-

labeled test samples X te = {Xte
i }nte

i=1 drawn independently

from pte(X) (i.e., the semi-supervised setup).

Under the semi-supervised setup, the importance weight

may be simply estimated by estimating ptr(X) and pte(X)
from training and test samples and then taking their ratio.

However, density estimation is known to be a hard problem

and taking the ratio of estimated quantities tends to magnify

the estimation error. Thus such a two-shot process may not be

reliable in practice. Below, we introduce a method called the

Kullback Leibler Importance Estimation Procedure (KLIEP)
[5], which allows us to directly learn the importance weight

function without going through density estimation.

Let us model the importance function w(X) by the fol-

lowing linear model:

ŵ(X) =
b∑

l=1

αlϕ(X,Cl),

where {αl}b
l=1 are parameters to be learned from data sam-

ples, {Cl}b
l=1 are template points randomly chosen from the

test input set {Xte
i }nte

i=1, and ϕ(X, X′) is a basis function cho-

sen as

ϕ(X,X′) =
1

NN ′

N∑
i=1

N ′∑
i′=1

exp
(−‖xi − xi′‖2

2τ2

)
.
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We determine the coefficient {αl}b
l=1 by maximum like-

lihood estimation, which is formulated as

max
{αl}b

l=1

[
nte∑
i=1

log

(
b∑

l=1

αlϕ(Xte
i , Cl)

)]

s.t.

ntr∑
i=1

b∑
l=1

αlϕ(Xtr
i , Cl) = ntr and α1, . . . , αb ≥ 0.

This optimization problem is convex and thus the global so-

lution may be obtained by simply performing gradient ascent

and feasibility satisfaction iteratively. Note that the solution

{α̂l}b
l=1 tends to be sparse, which contributes to reducing the

computational cost in the test phase.

4. EXPERIMENTS

In this section, we report the results of speaker identification

in the light of covariate shift adaptation.

Training and test samples were collected from 10 male

speakers. The pronounced sentences are common to all

speakers, but the test sentences are different from those for

training. Moreover, the utterance samples for training were

recorded in 1990/12, while the utterance samples for testing

were recorded in 1991/3, 1991/6, and 1991/9, respectively.

Since the recording time is different between training and test

utterance samples, the session dependent variation is expected

to be included. So this would be a challenging task. We used

three sentences for training and five sentences for the test,

where the average duration of the sentences is about 4[s].

The input utterance is sampled at 16kHz with close-

talking microphone. A feature vector consists of 26 com-

ponents: 12 MFCCs, the normalized log energy, and their

first derivatives. Feature vectors are derived at every 10[ms]

over the Hamming-windowed speech segment of 25.6[ms].

We divide each utterance sequence into 300[ms] disjoint seg-

ments, each of which corresponds to a set of features of size

Xi ∈ R
26×30. We compute the speaker identification rate at

every 1.5[s] and judge the speaker ID at time t based on the

average posterior probability 1
5

∑5
i=1 p(Yt−i |Xt−i; V).

We compare KLR and IWKLR in terms of speaker identi-

fication for 1991/3, 1991/6, and 1991/9 [9]. For KLR training,

we only use the 1990/12 dataset (inputs X tr and their labels),

where the Gaussian width σ and the regularization parame-

ter δ are selected based on 5-fold CV. For IWKLR training,

we use unlabeled samples X te1, X te2, and X te3 in addition

to the training inputs X tr and their labels. We first estimate

the importance weight from training and test data pairs (X tr,

X te1), (X tr, X te2), or (X tr, X te3) by KLIEP, and then use 5-

fold IWCV to decide the Gaussian width σ and regularization

parameter δ.

Table 1 summarizes the speaker identification rates, show-

ing that IWKLR+IWCV outperforms KLR+CV for all ses-

sions. This result implies that importance weighting is useful

in coping with the influence of non-stationarity in practical

Table 1. Identification rates in percent. IWKLR+IWCV

refers to IWKLR with σ and δ chosen by 5-fold IWCV, and

KLR+CV refers to KLR with σ and δ chosen by 5-fold CV.

Values of chosen σ and δ are described in the bracket.

Test date IWKLR+IWCV KLR+CV

1991/3 86.8 (1.2, 0.0001) 86.1 (1.2, 0.0001)

1991/6 83.9 (1.3, 0.0001) 82.0 (1.2, 0.0001)

1991/9 92.0 (1.2, 0.0001) 91.6 (1.2, 0.0001)

Average 87.6 86.6

speaker identification such as utterance variation, the record-

ing environment change, and physical condition/emotion.

Therefore, we conclude that IWKLR+IWCV is a novel

promising approach to handling session dependent variation.

5. CONCLUSIONS

In this paper, we proposed a novel semi-supervised speaker

identification method that can alleviate the influence of non-

stationarity such as session dependent variation, the record-

ing environment change, and physical condition/emotion. we

conducted a text-independent speaker identification simula-

tion and experimentally found that the covariate shift formu-

lation is useful in dealing with session dependent variations.

6. REFERENCES

[1] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn, “Speaker verifi-

cation using adapted Gaussian mixture models”, Digital Signal
Processing 10(1):19–41, 2000.

[2] J. Mariethoz and S. Bengio, “A kernel trick for sequences ap-

plied to text-independent speaker verification systems”, Pattern
Recognition, 40(8):2315–2324, 2007.

[3] T. Matsui and K. Tanabe, “Comparative Study of Speaker Iden-

tification Methods: dPLRM, SVM, and GMM”, IEICE Transac-
tions on Information and Systems, E89-D(3):1066–1073, 2006.

[4] H. Shimodaira. “Improving predictive inference under covari-

ate shift by weighting the log-likelihood function”, Journal of
Statistical Planning and Inference, 90(2):227–244, 2000.

[5] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von

Bünau, and M. Kawanabe, “Direct importance estimation for

covariate shift adaptation”, Annals of the Institute of Statistical
Mathematics, 60(4):699–746, 2008

[6] M. Sugiyama, M. Krauledat, K.-R. Müller, “Covariate shift

adaptation by importance weighted cross validation”, Journal
of Machine Learning Research, 8:985–1005, 2007.

[7] L. Rabiner and B-H. Juang, Fundamentals of Speech Recogni-
tion, Prentice Hall, 1993

[8] K. Tanabe, “Penalized logistic regression machines: New meth-

ods for statistical prediction 1”, Technical Report 143, Institute

of Statistical Mathematics, 2001.

[9] T. Matsui and S. Furui, “Concatenated phoneme models for

text-variable speaker recognition”, Proceedings of ICASSP’93,

II:391–394, 1993.

1664


