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ABSTRACT
In this paper we propose a new unsupervised training method for
nonlinear spatial filter using a new independent component analysis
based on kernel infomax. The nonlinearity of the spatial filter used in
this paper is equivalent to the integration of beamforming and spec-
tral subtraction, and the whole structure is optimized by independent
component analysis in the reproducing kernel Hilbert space. The
optimized filter is shown to be capable of achieving better quality
output than the conventional method based on time-frequency binary
masking.

Index Terms— Blind source separation, independent compo-
nent analysis, reproducing kernel Hilbert space, underdetermined
problem, beamforming.

1. INTRODUCTION
Blind source separation (BSS) has been widely studied in over the
past decade, and is expected to be an important tool in many speech
applications [1]. Recently several research groups succeeded in im-
plementations of real-time BSS with high performance. However,
there still remain many issues about robustness and limitations for
practical use of the system. This paper focuses on the problem of the
number of the sources to be separated.

There are mainly two approaches in BSS, namely, independent
component analysis (ICA) [1] and time-frequency binary masking
(TFBM) [2]. ICA is an unsupervised training framework of beam-
formers and has wide variations in the domain where ICA is trained,
i.e., time domain or frequency domain [3], and in the criterion, i.e.,
mutual information, temporal correlations and non-stationarity [4].
The performance of ICA is bounded by the limitation of beamform-
ing, which is the underlying physical mechanism of the source sepa-
ration accomplished by ICA. In ICA, the number of the sources has
to be smaller than or equal to that of the sensors so that all sources
except the target can be excluded from the output signals by con-
structing directional nulls. Also, the sources have to be of a point
source type which can be cancelled by a directional null. Under the
situation where these conditions are satisfied, ICA has a potential to
perform extremely well. TFBM method implements discrete sup-
pression of little overlap of signal activities from different sources
in the time-frequency domain assuming very small overlap of the
amplitude among sources. This mechanism does not assume knowl-
edge of the number of sources, and can solve the problem of the
so-called underdetermined BSS, where more sources than the sen-
sors exist. However, the quality is not very high if the assumption
does not hold. Also, filtering of TFBM does not take advantage the
number of sensors like ICA does.

As a candidate for the solution of underdetermined problem,
one of the authors has proposed a nonlinear beamformer, i.e., inte-
gration of linear beamforming and nonlinear processing of spectral
subtraction [5]. Note that in this paper, we use the terms ‘linear’ or
‘nonlinear’ from the viewpoint of signal processing aspect, not array
configuration. This method can cancel twice as many sources as a
linear beamformer with the same number of sensors can. Process-
ing in the method does not assume sparseness in the signal activ-
ity from different sources; rather, it is a continuous processing and
capable of separating signals even with overlapping time-frequency
activities without creating serious artifacts. We have have also pro-
posed a sufficiently analytical adaaptation algorithm of the nonlinear
beamformer using kernel method [6]. Kernel method is an optimiza-
tion technique of nonlinear function, and is popular in the research
field of machine learning [7]. By utilizing nonlinear mapping to
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the higher dimensional Hilbert space so-called reproducing kernel
Hilbert space (RKHS) [8], a linear optimization technique is ex-
tended to a nonlinear optimization in a straightforward manner. In
this paper we propose a new underdetermined BSS solution by adap-
tation of nonlinear beamformer with ICA in the RKHS. We derive
ICA of the class of infomax with natural gradient [9] in the RKHS,
and optimize the nonlinear beamformer in an unsupervised way.

Here we describe the difference of the proposed method from
the other kernel-based ICA algorithms. Several research groups
have studied independence measure with kernel method [10]. These
researches aim to linear separation problem unlike our purpose.
Another group has already formulated nonlinear ICA with kernel
method with non-Gaussianity criterion [11]. However, the output
here ends up with feature extraction, and the reconstruction of sep-
arated signal in the observation space is not obtained because of an
inappropriate choice of kernel and normalization in the RKHS. Also,
although the difference may not be significant, the Kullback-Leibler
divergence with suitable assumption in the marginal distribution we
use is more suitable criterion than non-Gaussianity, because Gaus-
sian signal in the observation space is not Gaussian any more in the
RKHS because of the nonlinear scaling in the higher-dimensional
mapping.

2. BLIND SOURCE SEPARATION
2.1. Problem description
Observations of multiple sound mixture captured by distant-talking
microphones are modeled as convolutive mixtures. In this paper,
we discuss the separation of such mixture in the frequency domain,
where the convolution is modeled as a simple memoryless multipli-
cation. The observed signal xm(ω) of the angular frequency ω at the
m-th microphone generated by N sources sn(ω) for n = 1, . . . , N
is written as

xm(ω) =

NX
n

hmn(ω)sn(ω), (1)

where hmn(ω) is a transfer function from the n-th source to the m-
th microphone. Using matrix expression, the observation with M
microphones is given by

x(ω) = [x1(ω) · · · xM (ω)]T = H(ω)s(ω) =

NX
n=1

hn(ω)sn(ω),

(2)

H(ω) = [hmn(ω)]mn = [h1(ω) · · · hN (ω)] , (3)

s(ω) = [s1(ω) · · · sN (ω)]T , (4)

where {·}T
denotes matrix transposition and [x]ij denotes a matrix

which has an entry x in the i-th row and the j-th column. The goal
of the BSS is to obtain an estimate yn(ω) of sn(ω) only from the
observed sequences such that

yn(ω) ≈ sn(ω). (5)

2.2. ICA-based approach
BSS of convolutive mixture based on ICA can be interpreted as
simultaneous unsupervised adaptation of multiple beamformers.
Since the separation is obtained by linear FIR filtering, this method
does not suffer from unpleasant artifact effects caused by nonlinear
filtering. Its disadvantage, though, is that the separation is limited
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by directional nulls that the beamformers can construct. ICA with
M microphones can separate less than or equal to M sources, and
the sources must be strictly point sources.

Here we describe BSS of convolutive mixture using infomax al-
gorithm in the frequency domain [3], which is shown to be effective
in the application of speech separation [12]. The ICA separates the
output signals y(ω) with an N × M filter matrix W(ω) as

y(ω) = [y1(ω) · · · yN (ω)]T = W(ω)x(ω). (6)

Each row of W(ω) constructs a beamformer to enhance a differ-
ent source. Assuming statistical independence among the origi-
nal sources sn(ω), achieving independence among output signals
through W(ω) leads to successful separation [1]. To accomplish
maximization of independence, we first obtain the a sequence
x(ω, t) of short-time Fourier analysis of the observed signal x(ω),
and assume the following approximation:

y(ω, t) ≈ W(ω)x(ω, t). (7)

We then update the demixing matrix W(ω) to enhance a prescribed
independence criterion. A typical solution to this problem is infomax
with natural gradient [3]:

W(ω) ← W(ω) + μ
“

IL − E
h
f (y(ω, t)) y(ω, t)H

i
t

”
W(ω), (8)

where E[·]t is expectation over t, {·}H
is conjugate transposition,

and f(·) is the J-dimensional vector of nonlinear function given by

f(y(ω, t)) = [f (y1(ω, t)) · · · f (yJ(ω, t))]T . (9)

The nonlinear function f(·) must beproperly chosen and consistent
with the model on which prescribed independence criterion can be
sensibly evaluated. Here the independence criterion does not specify
the output order in ω. This is the so-called permutation problem [13].
Hence, to extract the separated sources in the time domain, after
the iterative optimization, the rows of W(ω) have to be reordered to
produce the same source across the frequency.

2.3. TFBM-based approach
TFBM [2] is a nonlinear filtering with discrete classification for un-
derdetermined BSS problem assuming sparseness among sources.
The signal components in the time-frequency domain are masked to
be zero when they are not classified to the target singal sources. This
method can realize underdetermined source separation; the number
of the sources N can be larger than M of the microphones. How-
ever, the performance degrades when sparseness is not clear because
of reverberation or existence of non-harmonic signal sources such
as stationary noise. The residual component of the nonlinear signal
processing appears as annoying artifacts such as musical noise. The
masking itself is a single-channel processing and the number of the
microphnes does not benefit the performance or the quality.

3. NONLINEAR ICA ALGORITHM
3.1. Reproducing kernel Hilbert spaces
In this section, we introduce the kernel method to give the geomet-
ric background of underdetermined source separation with nonlinear
beamforming. The kernel method employs nonlinear mapping from
the observation space to another Hilbert space of a higher, possibly
infinite dimensionality. As a result, the dimension of the null realiz-
able space increases with the higher-dimensional mapping. By con-
structing beamformers in the higher-dimensional RKHS, the beam-
formers can deal with a larger number of sources.

Figure 1 shows an illustration of mapping with the kernel
method. By using a positive-definite kernel function K(x1, x2)
defined over two vectors x1, x2 ∈ C

M , we can construct a Hilbert

space H. In particular, a vector x ∈ C
M is mapped with nonlinear

function ffi : C
M → H, and the inner product of the two mapped

vectors ffi(x1) and ffi(x2) is prescribed as the kernel function:

ffi(x1)
Hffi(x2) = K(x1, x2). (10)

Euclidean space of
observed signals
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Reproduction kernel
Hilbert space (RKHS)

Nonlinear
map φ(  )
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Fig. 1. Relation among the RKHS H, the kernel function K(·, ·),
and nonlinear mapping ffi(·). Definition of a positive-definite kernel

function K(x1, x2) (x1, x2 ∈ C
M ) corresponds to definition of an

RKHS H, and the kernel function works as an inner product between

ffi(x1) and ffi(x2) with the mapping ffi : C
M → H. The vector ffi(x)

in the RKHS is expressed as a functional K(x, ·), and we do not
need to obtain the mapping function ffi itself.
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Fig. 2. Configuration of Nonlinear beamformer integrated with spec-
tral subtraction.

One of the most popular positive-definite kernel functions in ma-
chine learning is the d-th order polynomial kernel which is also used
in [11], given by

K(x1, x2) =
“

xH
1x2 + 1

”d

. (11)

Since linearity is satisfied in the RKHS, we can formulate the opti-
mization problem in H with K(·, ·) but mapping ffi itself. Generally
the dimensionality of H is higher than M of the vectors that are
mapped from. This is a useful feature for pattern classification prob-
lems because linear separability of the classes is improved by the
increase of dimensionality [7].

3.2. Nonlinear beamforming with a quadratic kernel
Among many kernel functions to realize higher-dimensional map-
ping, we have to choose the kernel carefully because the mapping
should maintain both the high-dimensional and the relation of the
signal bases in the observation space as much as possible. In fact,
the polynomial kernel in Eq. (11) is not suitable. If the directional
null in the RKHS has no relationship to the directivity in the ob-
servation space, the optimization is trivial. In this paper we use the
following kernel function:

K(x1, x2) = xH
2x1xH

1x2. (12)

We will call this kernel function quadratic kernel. As noted earlier,
one of the authors proposed a nonlinear beamformer integrated with
spectral subtraction [5], which can deal with 2(M − 1) sources. Re-
cently we have discovered an equivalence between this beamforming
and the quadratic kernel in [6], where we have formulated a sufficient
supervised adaptation of the nonlinear beamformer using this kernel
function.

Figure 2 shows the configuration of the nonlinear beamformer.
This method constructs two different linear adaptive beamformers
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g1(ω) and g2(ω), and the output y2(ω) of the nonlinear beamform-
ing is a result of spectral subtraction between sum and difference of
the two beamformers, written as

y2(ω, t) =
1

2
|(g1(ω) + g2(ω)) x(ω, t)|2

− 1

2
|(g1(ω) − g2(ω)) x(ω, t)|2

= x(ω, t)HG(ω)x(ω, t), (13)
gl(ω) = [gl1(ω) · · · glN (ω)] for l = 1, 2, (14)

G(ω) = g1(ω)Hg2(ω) + g2(ω)Hg1(ω). (15)

Thus the adaptation of g1(ω) and g2(ω) is equivalent to that of the
symmetric matrix G(ω). Moreover, G(ω) can be expressed by lin-
ear combination of training data x(ω, l) with the weighting factor
α(ω, l) for the frame index l = l1, . . . , lL of the training data, as

G(ω) =

lLX
l=l1

α(ω, l)x(ω, l)x(ω, l)H, (16)

and optimization of G(ω) leads to that of ω(ω, l). Using the kernel
expression of Eq. (12), Eq. (13) is rewritten as the output of linear

beamformer ‚(ω)H in the RKHS as

y2(ω, t) = ‚(ω)Hffi (x(ω, t))

=

lLX
l=l1

α(ω, l)K (x(ω, l), x(ω, t)) (17)

with the beamformer

‚(ω)H =

lLX
l=l1

α(ω, l)ffi (x(ω, l))H . (18)

Also, by conducting oversubtraction [5], the nonlinear beam-
former obtains a stronger noise reduction ability and robustness
against non-point source. To conduct oversubtraction, we need to
filter of primary and secondary paths, which is written in [6] and
omitted in this paper.

3.3. ICA in RKHS: Kernel infomax
The proposed algorithm in this paper assumes that the quadratic ker-
nel in Eq.(12) is used. However, since the infomax-based formula-
tion of ICA in the RKHS has not been introduced to the best of our
knowledge, we generalize the problem and derive a kernel infomax
without specifying the type of kernel. The objective is to separate
the mixture ffi(x(ω)) in H into N statistically independent signals
fl(ω) by projecting it onto N vectors ‚n(ω), n = 1, . . . , N :

υn(ω, t) = ‚n(ω)Hffi (x(ω, t)) , (19)

or in the matrix form,

fl(ω, t) = [υ1(ω, t) · · · υN (ω, t)]T

= Γ(ω)ffi(x(ω, t)), (20)

where Γ(ω) is a linear operator to map from H to C
N , written as

Γ(ω) = [‚1(ω) · · · ‚N (ω)]H . (21)

Here the domain of Γ(ω) can be limited to the subspace spanned by
the training data ffi (x(ω, l)). Since the RKHS H satisfies linearity,
we express ‚n(ω) by a linear combination of the mapped training
data, similarly to almost all of the kernel methods, as

‚n(ω)H =

lLX
l=l1

αnl(ω)ffi (x(ω, l))H , (22)

Γ(ω) = [‚1(ω) · · · ‚N (ω)]H = A(ω)»(ω), (23)
A(ω) = [αnl(ω)]nl , (24)

»(ω) = [ffi (x(ω, l1)) · · · ffi (x(ω, lL))]H, (25)

where αnl(ω) is a real weighting factor. Thus the optimization of
Γ(ω) results in optimization of αnl(ω).

Since the joint probability and the product of the marginal prob-
abilities are equal when the random variables are independent, info-
max utilizes the Kullback-Leibler divergence (KLD) between joint
and marginal distributions of the output signals as measure of in-
dependence. Such a KLD about the product of the fl(ω) is written
as

I(fl(ω)) =

Z
p(fl(ω, t)) log

p (fl(ω, t))QN
n=1 p (υn(ω, t))

dfl(ω, t). (26)

With the step-size parameter μ(ω), the update formula of Γ(ω) is
given by the gradient of the KLD as

Γ(ω) ← Γ(ω) − μ
∂I (fl(ω))

∂Γ(ω)
. (27)

Since ffi (x(ω)) is mapped to q J-dimensional space linearly from
H with more than J dimensions, the problem corresponds to an
overdetermined source separation problem. Thus we can substitute
the parameters in the update formula for overdetermined infomax
with natural gradient [9] as

Γ(ω) ← Γ(ω) + μ
“

IJ − E
h
f (fl(ω, t)) fl(ω, t)H

i
t

”
Γ(ω), (28)

where IJ is J-dimensional identity matrix. Utilizing the relation

[υn(ω, l)]nl = A(ω)K(ω), (29)

with n = 1, . . . , N, l = l1, . . . , lL, where

K(ω) = »(ω)»(ω)H, (30)

the expectation is substituted by the sample average as

E
h
f (y(ω, t)) y(ω, t)H

i
t
≈ 1

L

lLX
l=l1

f (y(ω, l)) y(ω, l)H

=
1

L
F (A(ω)K(ω)) K(ω)HA(ω)H, (31)

where

F
“
[xij ]ij

”
= [f (xij)]ij . (32)

Substituting Eq. (23) and multiplying »(ω)HK(ω)+, where {·}+
is

the Moore-Penrose Inverse matrix, from the right side of Eq. (28),
equivalent update formula of A(ω) is given by

A(ω) ← A(ω) − μ

„
IJ − 1

L
F (A(ω)K(ω)) K(ω)A(ω)H

«
A(ω).

(33)
Note that we do not normalize signals in the RKHS, which is

recommended in the paper [11], and in fact popular in kernel meth-
ods to analyze subspaces, e.g., [10]. The normalization is applica-
ble even in this algorithm by modifying the Gramian matrix K(ω).
However, we did not apply normalization to retain the geometric re-
lationship among the observed vectors as much as possible, which
is important to recover the separated signal in the time domain. If
the observed signal has a bias, normalization should be done in the
observation space.

3.4. System identification to reformat the separation filters
By using the weighting factor obtained by kernel infomax with

K(x1, x2) = xH
2x1xH

1x2 in Eq. (12), the estimate y2
n(ω, t) of the

n-th source is obtained as

y2
n(ω, t) = x(ω, t)HGn(ω)x(ω, t), (34)

Gn(ω) =

lLX
l=l1

αn(ω, l)x(ω, l)x(ω, l)H. (35)
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However, Gn(ω) still has several problems to be used as a beam-
former. First, similar to the conventional frequency-domain ICA,
permutation of the output has to be re-aligned. Second, also similar
to the conventional ICA, amplitude of the output has to be formatted.
Third, the phase cannot be estimated from Gn(ω). Fourth, estima-
tion of the transfer system, the so-called steering vector, is required
to conduct oversubtraction in [6]. To solve these problems, estima-
tion of the mixing system is indispensable.

By calculating the inverse matrix of the demixing matrix, dif-
ference of phase and amplitude among channels can be estimated.
Similarly, inversion of the linear separation operator Γ(ω) gives a
similar estimation. The weighting factor to construct the inverse lin-
ear operator is obtained by inversion of the Gramian matrix K(ω).
However, here for the efficiency of calculation, we use a more com-
pact Gramian matrix KG(ω) of Gn(ω) given by

KG(ω) = [K (Gi(ω), Gj(ω))]ij . (36)

Here, because Gn(ω) is a matrix, a calculation of the kernel function
K (Gi(ω), Gj(ω)) is slightly different from K(x1, x2) in Eq. (12),
and is given by

K(Gi(ω), Gj(ω)) =
X

k

d
(i)
k (ω)v(i)

k (ω)HGj(ω)v(i)
k (ω), (37)

where v(i)
k (ω) and d

(i)
k (ω) are the k-th eigenvector and the k-th

eigenvalue of Gi(ω), respectively. Then, the transfer function
Mn(ω) in H, which is emphasized by Gn(ω), is given by

Mn(ω) =
X

i

βin(ω)Gi(ω), (38)

B(ω) = [βin(ω)]in = KG(ω)+. (39)

Then the vector vn(ω) which is emphasized the most by Wn(ω) is

given by the most significant eigenvector ĥn of the transfer function
Mn(ω) in H as

ĥn(ω) = arg max
v | ‖v‖2=1

vHMn(ω)v. (40)

By formatting phase with a suitable criterion, ĥn(ω) is used as an
estimate of the mixing system for the above objectives.

4. EXPERIMENTS
Tables 1 and 2 show the evaluation results of the separation perfor-
mance and quality of the extracted speech. NRR stands for noise
reduction ratio [5], which denotes the improvement of SNR with
the processing. PESQ is an evaluation score of speech coding qual-
ity and predicts subjective evaluation result [14]. The evaluation is
conducted with measured impulse responses in a room with T60 of
approximately 400 ms, and the distance from the sources to the mi-
crophones is 1.5 m. The two-element microphone array with in-
terelement spacing of 2 cm is used. Sources are distributed in the
directions of [−40◦, −10◦, 30◦] and [−50◦, 10◦, 60◦] from the
front. To exclude effects of permutation solution algorithm from
the score of the proposed method, we assumed the best permutation
alignment. MENUET is a reasonable realization of TFBM proposed
in [15]. We evaluated three oversubtraction parameters β = 3, 5, 7
[5, 6].

Table 1 shows the separation performance of the mixture of three
sources chosen from two female and two male speech with the same
power (thus three sources are all speech). Since the sparseness as-
sumption is satisfied, the performance of the TFBM method is very
good. Table 2 shows the separation performance of speech from the
mixture of three sources, which are chosen from female and male
speech, music and stationary noise, with the same power. Since sig-
nal sparseness is not as strong as the previous one, the TFBM method
performs worse, and especially the PESQ score degrades substan-
tially. On the other hand, the proposed method is not affected by the
sparseness assumption and performs more robustly than TFBM.

Table 1. Separation performance with three speech mixture

Method NRR [dB] PESQ

MENUET 8.87 2.04
Proposed (β = 3) 8.78 2.04
Proposed (β = 5) 9.56 2.04
Proposed (β = 7) 9.52 2.02

Table 2. Speech extraction performance from music and noise

Method NRR [dB] PESQ

MENUET 7.36 1.30
Proposed (β = 3) 7.14 1.92
Proposed (β = 5) 8.22 1.93
Proposed (β = 7) 8.87 1.92

5. CONCLUSIONS
We proposed a new nonlinear ICA algorithm based on the kernel
method. Also, we used a kernel to works as nonlinear beamform-
ing integrated with spectral subtraction, which can separate twice
as many sources as does the linear ICA. The proposed method sep-
arated three sources with two microphone with higher performance
than the conventional method when sparseness assumption is not sat-
isfied well.

Our future work is to find other effective kernel mapping to
higher dimensional RKHS than quadratic kernel does while retain-
ing well the relationship among the signal bases well.
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